• Title/Summary/Keyword: surfactant adsorption

Search Result 134, Processing Time 0.026 seconds

A novel nanocomposite as adsorbent for formaldehyde removal from aqueous solution

  • Hejri, Zahra;Hejri, Mehri;Omidvar, Maryam;Morshedi, Sadjad
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • In order to develop a new adsorbent for removal of formaldehyde from aqueous solution, surface modification of TiO2 nanoparticles was performed with 2,4-Dinitrophenylhydrazine (DNPH) that have a strong affinity to the formaldehyde. Sodium dodecyl sulfate (SDS) surfactant was used to improve the DNPH grafting to TiO2 surface. Modified adsorbents were characterized by SEM, TEM, XRD, EDX and FTIR. Since the COD level in wastewaters including formaldehyde is considerable, it is necessary to determine the COD content of the synthetic wastewater. In order to determine the optimal removal conditions, the effect of contact time (60-210 min), pH (4-10) and adsorbent dosage (0.5-1.5 g/L) on adsorption and COD removal efficiencies were studied, using response surface method. EDX and FTIR analysis confirmed the presence of nitrogen-containing functional groups on the modified TiO2 surface. The maximum formaldehyde adsorption and COD removal efficiencies by modified TiO2 were about 15.65 and 7.35% higher than the unmodified nanoparticles respectively. Therefore, the grafting of nano-TiO2 with DNPH would greatly improve its formaldehyde adsorption efficiency. The optimum conditions determined for a maximum formaldehyde removal of 99.904% and a COD reduction of 94.815% by TiO2/SDS/DNPH nanocomposites were: adsorbent dosage 1.100 g/L, pH 7.424 and the contact time 183.290 min.

The study on the separation characteristics of heavy metal ion by inorganic oxides and ion exchange resin (무기산화물 및 이온교환수지에 의한중금속 이온 분리특성 연구)

  • Dan, Cheol Ho;Kim, eong Ho;Yang, Hyun Soo
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • The effectiveness of inorganic oxides (DT-30), anionic exchange resin (DT-60) and carbon absorbent (DT-80, DT-90) on the equilibrium and continuous separation characteristics and removal of cobalt, cesium and iodide ion in the waste water was investigated. As a result, DT-30, DT-80 or DT-90, and DT-60 showed excellent separation properties on the cesium, cobalt and iodide respectively. In the equilibrium experiment, the adsorption amount of cesium for DT-30 increased with temperature, but increasd largely with pH. In case of DT-80, adsorption of cobalt was depended on pH but was not influenced by temperature. In the continuous system by passing a heavy metal ion solution through the ion exchange tower, DT-30, DT-90 and DT-60 showed good separation characteristic for cesium, cobalt and iodide respectively. In this case, separation characterization of DT-30 on the cesium and of DT-60 on the iodide were better than that of DT-90 on the cobalt. From the experiment on the effect of impurities on the ion exchange characteristics, impurities such as surfactant and oil did not influence the efficiency of DT-90. In the mean while, ion separation capacity of DT-30 were decreased largely by impurities such as surfactant and oil. Also, surfactant had a strong influence on the effectiveness of DT-60. Accordingly, it turned out to be very important thing that impurities should be removed in the preprocessing stage.

  • PDF

Study on the Detachment of Fluorescent Whitening Agents from White Waster Papers (인쇄용지 재활용을 위한 형광증백제 탈착에 대한 기초연구)

  • Lee, Ji Young;Kim, Chul Hwan;Kim, Eun Hea;Park, Tae Ung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.5-12
    • /
    • 2016
  • White waste papers are very important resources in the paper industry, but their use is limited because of the residual of fluorescent whitening agent (FWA). So the removal of FWAs from waste paper is an important task in the recycling process to improve the use of recycled resources. In this study, we focused on the FWAs used for surface treatments and carried out physical and chemical treatments to remove them from white waste papers. The white waste papers were disintegrated with a surfactant in different pH and temperature conditions, and then handsheets were made for the measurement of the fluorescence index, which is proportional to the amount of FWAs on papers. The effect of the flotation process on the removal of FWAs after disintegration was also investigated. The fluorescence index decreased as the disintegration time increased, but over a relatively long time, the fluorescence index increased again, which indicated the readsorption of the FWAs detached from the cellulosic fibers of the white waste papers. The lowest fluorescence index was shown when the waste papers were disintegrated with a 0.3% surfactant addition at pH 10 and at $45^{\circ}C$. However, the flotation treatment was not effective, because the flotation induced contact between the detached FWAs and the cellulosic fibers, and re-adsorption occurred.

$DeNO_{x}$ Performance of Activated Carbon Catalysts Regenerated by Surfactant Solution (계면활성제 수용액에 의해 재생된 활성탄 촉매의 탈질 성능)

  • Park, Hye-Min;Park, Young-Kwon;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.739-744
    • /
    • 2011
  • Activated carbon SCR(CSCR) catalyst that is used to remove $NO_x$ in exhaust gas including boron discharged from the production process of liquid crystal display(LCD) shows deactivation when boron is deposited to block the pores within the catalyst or to cover its active sites. The spent carbon catalyst is regenerated by washing with various surfactants, drying and calcination. For comparison of the physical and chemical properties before and after the regeneration with the variables, type of surfactants and calcination condition, element analysis by ICP, $N_{2}$ adsorption were conducted. $DeNO_{x}$ in SCR with $NH_3$ was carried out in a fixed bed reactor at $120^{\circ}C$. The activated carbon catalyst regenerated through washing with a non-ionic surfactant in $H_{2}O$ at $90^{\circ}C$ and calcination under $N_{2}$ gas at $550^{\circ}C$ shows similar level of surface area and $NO_x$ removal efficiency with those of fresh catalyst.

Micellar Enhanced Ceramic Microfiltration for Removal of Aqueous Ferrous Ion: Effect of Surfactant Concentration and $N_2$-back-flushing (용존 철(II) 제거를 위한 미셀형성 세라믹 정밀여과: 계면활성제 농도 및 질소 역세척의 영향)

  • Park, Jin-Yong;Kang, Sung-Gyu
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.136-144
    • /
    • 2009
  • In this study, sodium dedocyl sulfate (SDS), which was anionic surfactant, was added for forming micelles to remove ferrous ions that could be contained with a small amount in industrial water. Then aggregates were formed by adsorption or binding of ferrous ions on the surface of micelles, and then rejected by ceramic membranes to remove ferrous ions. Ferrous concentration was fixed at 1mM and SDS was changed as $0{\sim}10mM$ to investigate the effect of the anionic surfactant. As a result, rejection rate of ferrous was the highest to 88.97% at 6mM. And we used ELS (Electrophoretic Light Scattering Spectrometer) to investigate particle size distribution of micellar aggregates depending on SDS concentration. Then distribution of large aggregates was the highest at 6mM. And we investigated effects of $N_2$-back-flushing time (BT) during periodic $N_2$-back-flushing on ceramic membranes. Finally optimal $N_2$-BT for NCMT-723l (pore size $0.10{\mu}m$) membrane was 20 sec.

Syntheses and Properties of Isosorbide-based Cationic Gemini Surfactants (이소소르비드 기반의 양이온 제미니 계면활성제 합성 및 물성)

  • Cho, Jung-Eun;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.429-437
    • /
    • 2020
  • In this study, a cationic gemini surfactant was synthesized using isosorbide, in order to modify the alkyl chain length in the range of C10~C16. The c.m.c and surface tension of the synthesized cationic gemini surfactant were measured to be in the ranges of 5.13 × 10-4~1.62 × 10-4 mol/L and 31.86~37.41 dyne/cm, respectively. The surface tension increased with increasing the length of the alkyl group. In addition, as the area per molecule occupied by the surfactant adsorbed on the interface increased with the reduced extent of adsorption, the bubble generation at the air-water interface decreased. The emulsifying capacity in benzene was maintained above 60 ± 5% after 8 h while that in soybean oil tended to decrease above 50 ± 5%. The performance was superior in benzene, a highly hydrophobic substance, and the emulsion stability was shown to be consistent beyond 1 h during the preparation of pre-emulsion in oil and water. The antimicrobial activity was dependent on the length of the hydrophobic chain of the synthesized cationic gemini surfactant due to the increased size of the clean zone in Escherichia coli (E.coli) and Staphylococcus aureus.

Effects of Sulfonation Ratio in Petroleum Sulfonate Synthesis on Interfacial Properties and on Fluidity Properties of Cement Mortar (Petroleum Sulfonate의 합성에 있어서 황산화율이 계면활성 특성 및 시멘트 몰타르의 유동성에 미치는 영향)

  • Kim, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.444-449
    • /
    • 2010
  • In this study, the petroleum sulfonate(PS) was synthesized from pyolyzed fuel oil by sulfonation reaction with sulfuric acid. The PS synthesized had surfactant behaviors relating to the interfacial properties such as surface tension, surface adsorption, and wetting, etc. These interfacial properties were affected by the sulfonation ratio in the synthesis. As the sulfonation ratio increased, the surface tension of the PS aqueous solution decreased. However, when the ratio was too high, the surface tension was increased due to the extremely higher value of hydrophilicity of PS. At the optimum sulfonation ratio, the PS had a good wettability on the cement particles and a good fluidity of the cement mortar with a high adsorption.

Inactivation of the Preservative in Cosmetic by the Addition of Inorganic Powder (화장품에서 무기분말에 의한 방부제의 효능저하)

  • 정광수
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 1985
  • The decreased preservative effect by tale and $TiO_2$ for emulsions obtained with polyoxyethylene surfactant was studied by various analytical methods and biological test. The preservative effect of methyl p-hydroxybenzoate was decreased by the addition of talc and $TiO_2$ and this result was attributed to the adsorption of methyl p-hydroxybenzoate on them. Talc exhibited more decreased preservative effect than that of $TiO_2$. The amount of the adsorption of methyl p-phydroxybenzoate by talc at $20^{\circ}C$ could be represented by the following equation; $a=11.511C^{0.747}$.

  • PDF

Photovoltaic Effect of Adsorbed Metallophthalocyanine on Zinc Oxide (프탈로시아닌이 흡착된 산화아연의 광기전력효과에 관한 연구)

  • Soun-Ok Heur;Young-Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.416-422
    • /
    • 1993
  • As a result of adsorbing phthalocyanine (metal free, ${\alpha}\;and\;{\beta}$-Cu) on zinc oxide in aqueous solution using nonionic surfactant, all of the added dye was adsorbed and Na salt of sulfonated phthalocyanine showed the Langmuir monolayer adsorption. To analyze the effect of adsorption on zinc oxide, photovoltage was measured using surface photovoltmeter. The high photovoltaic effect was observed at intrinsic wavelength of zinc oxide and wavelength of adsorbed phthalocyanine dye. Metal free phthalocyanine, ${\alpha}$-copper phthalocyanine and ${\beta}$-copper phthalocyanine showed the highest photovoltaic effect when the percentage of coverage (${\theta}_{BET}$) for zinc oxide is about 80, while sulfonated phthalocyanine showed the highest photovoltaic effect when the percentage of coverage for zinc oxide is about 30.

  • PDF

Fabrication of Meso/Macroporous Carbon Monolith and its Application as a Support for Adsorptive Separation of D-Amino Acid from Racemates

  • Park, Da-Min;Jeon, Sang Kwon;Yang, Jin Yong;Choi, Sung Dae;Kim, Geon Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1720-1726
    • /
    • 2014
  • (S)-Alanine Racemase Chiral Analogue ((S)-ARCA) was used as an efficient adsorbent for the selective separation of D-amino acids (D-AAs), which are industrially important as chiral building blocks for the synthesis of pharmaceutical intermediates. The organic phase, containing (S)-ARCA adsorbent and phase transfer reagents, such as ionic liquid type molecules (Tetraphenylphosphonium chloride (TPPC), Octyltriphenylphosponium bromide (OTPPBr)), were coated on the surfaces of mesoporous carbon supports. For the immobilization of chiral adsorbents, meso/macroporous monolithic carbon (MMC), having bimodal pore structures with high surface areas and pore volumes, were fabricated. The separation of chiral AAs by adsorption onto the heterogeneous (S)-ARCA was performed using a continuous flow type packed bed reactor system. The effects of loading amount of ARCA on the support, the molar ratio of AA to ARCA, flow rates, and the type of phase transfer reagent (PTR) on the isolation yields and the optical purity of product D-AAs were investigated. D-AAs were selectively combined to (S)-ARCA through imine formation reaction in an aqueous basic solution of racemic D/L-AA. The (S)-ARCA coated MMC support showed a high selectivity, up to 95 ee%, for the separation of D-type phenylalanine, serine and tryptophan from racemic mixtures. The ionic liquids TPPC and OTPPBr exhibited superior properties to those of the ionic surfactant Cetyltrimethyl ammonium bromide (CTAB), as a PTR, showing constant optical purities of 95 ee%, with high isolation yields for five repeated reuses. The unique separation properties in this heterogeneous adsorption system should provide for an expansion of the applications of porous materials for commercial processes.