• Title/Summary/Keyword: surface-wave dispersion

Search Result 144, Processing Time 0.023 seconds

Analytical Study for dispersed Phase Velocity Information of Love Waves (러브파의 위상속도 분산정보에 관한 해석적 연구)

  • 이일화
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.391-399
    • /
    • 2004
  • This paper investigated the dispersion characteristics of horizontal surface waves as means to apply conversional SASW techniques. To verify this proposal, 3D finite element analysis and Transfer matrix solution were performed. SH wave(Love waves) has the some advantages in comparison with Rayleigh wave. Representatively, Love wave has a characteristics not affected by compression wave. These characteristics have the robust applicability for the surface wave investigation techniques. In this study, for the purpose of employing Love wave in the SASW method, the dispersion characteristics of the Love wave was extensively investigated by the theoretical and numerical approaches. The 3-D finite element and transfer matrix analyses for the half space and two-layer systems were performed to determine the phase velocities from Love wave as well as from both the vertical and the horizontal components of Rayleigh wave. Preliminary, numerical simulations and theoretical solutions indicated that the dispersion characteristics of horizontal surface wave(Love waves) can be sufficiently sensitive and appliable to SASW techniques.

A study on surface wave dispersion due to the effect of soft layer in layered media

  • Roy, Narayan;Jakka, Ravi S.;Wason, H.R.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.775-791
    • /
    • 2017
  • Surface wave techniques are widely used as non-invasive method for geotechnical site characterization. Field surface wave data are collected and analyzed using different processing techniques to generate the dispersion curves, which are further used to extract the shear wave velocity profile by inverse problem solution. Characteristics of a dispersion curve depend on the subsurface layering information of a vertically heterogeneous medium. Sometimes soft layer can be found between two stiff layers in the vertically heterogeneous media, and it can affect the wave propagation dramatically. Now most of the surface wave techniques use the fundamental mode Rayleigh wave propagation during the inversion, but this may not be the actual scenario when a soft layer is present in a vertically layered medium. This paper presents a detailed and comprehensive study using finite element method to examine the effect of soft layers which sometimes get trapped between two high velocity layers. Determination of the presence of a soft layer is quite important for proper mechanical characterization of a soil deposit. Present analysis shows that the thickness and position of the trapped soft layer highly influence the dispersion of Rayleigh waves while the higher modes also contribute in the resulting wave propagation.

A Study on the Application and Dispersion Characteristics Analysis of Surface SH-wave Mode (표면 SH파 모드의 분산특성 해석과 그 응용)

  • 이상용;박익근;윤종학;노승남;안형근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.61-65
    • /
    • 2001
  • A new flaw detection technique using by SH angle beam method has been discussed. The SH-wave is horizontally polarized shear wave and the surface SH wave has a characteristic of traveling along near surface layer. The surface SH wave technique is valuable for the detection of fatigue cracks at fillet weld heels which cannot be detected by other ultrasonic technique such as angle beam technique and The dispersion curves of it has simple characterization. In this work, using these beneficial chraterization, quality evaluation of spot weld with ultrasonic sound intensity of SH-wave passing through nugget area of spot weld are verified experimentally.

  • PDF

The Effect of Dispersion Relations on the Determination of Surface Acoustical Wave Velocity (주파수 의존성이 표면탄성파의 속도 결정에 미치는 영향)

  • Kwon, Sung-D.;Yoon, Seok-S.;Lee, Seung-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.340-346
    • /
    • 1999
  • Minimum reflection and backward radiation methods on liquid/solid interrace were used to determine the velocity dispersion relation of acoustical surface wave for brass and aluminum substrates and copper/stainless steel nickel/brass, and nickel/aluminum layered substrates. Dispersion data agreed to dispersion characteristics of a generalized Lamb wave. The difference between velocities determined by two phenomena was closely related to the dispersion characteristics. This correspondence was explained by considering the generation mechanism of surface waves and the concept of group velocity.

  • PDF

A Numerical Study on the Effect of Near Surface Inhomogeneity on Rayleigh Wave Propagation and Dispersion (천부 불균질대에 의한 레일리파 전파 및 분산특성 고찰)

  • Lee, Sang-Min;Park, Kwon-Gyu;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.148-154
    • /
    • 2006
  • The effect of small-scale near surface inhomogeneity on Rayleigh wave propagation and dispersion has been investigated in this study using two-dimensional FEM elastic modeling. Various inhomogeneity models with a variety of geometrical shape and embedment depth which exist in homogeneous half-space and two-layered media are considered. Results show that any near surface inhomogeneity greater than one wavelength in terms of minimum wavelength of Rayleigh wave shows dispersion characteristics. Such dispersion effect become stronger as the dimensions of the inhomogeneity increase. The effect of horizontal dimension is more dominant factor governing the dispersion characteristics than vertical dimension. However, the dispersion effect can not be identifiable in seismogram if the horizontal dimension is not wide enough. Nonetheless, even in this case, the existence of inhomogeneity can be inferred by the reflection or transmission event of Rayleigh wave. The results can be expected to provide insights on the behavior of Rayleigh wave which may be helpful for designating field work or new processing scheme to detect near surface inhomogeneity by surface wave method.

A Study on Feasibility of Surface Wave Application for the Assessment of Physical Properties of Dam (표면파 적용 댐체 물성 조사 타당성 연구)

  • Kim, Hyoung-Soo;Min, Dong-Ju;Kim, Jung-Yul;Ha, Ik-Soo;Oh, Suk-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.384-391
    • /
    • 2005
  • Three dimensional finite difference elastic wave model was developed to estimate the feasibility of surface wave applications in geotechnical problems. The wave motions calculated by the developed program in this study shows good agreement with well known analytic solutions. The surface wave motions calculated from layered dam type structure can be interpreted as a infinite layer structure using dispersion curve but it is need a special source of which high energy in frequency band lower than 10 Hz to get information of physical properties in few tens meter deep. The source which has high energy in the low frequency band, however, can give defect on dam and this will make some limitation in real field applications. The dispersion curves calculated from the surface wave motion of homogeneous and center core type dam models will give rise to fatal errors if the conventional infinite layer structure used in their interpretation because the surrounding materials and boundaries of dam make some distortion in dispersion curve of surface wave. So it is strongly recommended to use three dimensional inversion model for correct interpretation and estimation of physical properties of dam materials.

  • PDF

Time-Frequency Analysis of Lamb wave mode (램파모드의 시간-주파수 해석)

  • 박익근;안형근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.133-140
    • /
    • 2001
  • Recently, to assure the integrity of a structural components such as piping pressure vessels and thinning structure, Lamb wave inspection technique has been used in material evaluation. It is very important to select the optimal Lamb wave mode and to analyze the signal accurately because of its unique dispersion properties grnerating several modes within the speci-men. It this study, the feasibility of material evaluation applications using wavelet analysis of Lamb wave has been veir-fied experimentally. These results show as follows; 1)dispersion characteristic of each mode in dispersion curve is demon-strated that A0 mode propagating material surface is useful mode having the lest energy loss and not sensitive to surface condition. 2) it can be detected even the micro defect ($1\times2mm$) fabricated in ultrasonic probe flaw distance (290mm) to axis direction. 3) the wavelet transform which is called "time-frequency analysis" shows the Lamb wave propagation due to the change of materials characterization can be evaluated at each frequency and experimental group velocity of Lamb wave agrees quite well with that of simulated dispersion curve.ion curve.

  • PDF

Study on Sea Surface Reconstruction Using Sequent Radar Images (연속된 레이더 영상을 이용한 해수면 복원 연구)

  • Park, Jun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.100-105
    • /
    • 2013
  • This paper presents a sea surface reconstruction method that uses measured radar images by applying filtering techniques and identifying wave characteristics of the surrounding the Ieodo ocean research station using WaveFinder (X-band wave measurement radar), which is installed in the station. In addition, the results obtained from real radar images are used to verify the reconstructed sea surface. WaveFinder is a marine system that was developed to measure wave information in real time. The WaveFinder installed in the station could acquire sequent images for the sea surface at constant time intervals to obtain real time information (Wave height, mean wave period, wave directionality, etc.) for the wave by getting a three-dimensional spectrum by applying an FFT algorithm to the acquired sequent images and wave dispersion relation. In particular, we found the wave height using the SNR (Signal to noise ratio) of the acquired images. The wave information measured by WaveFinder could be verified by comparing and analyzing the results measured using the wave measurement instrument (Sea level monitor) in the station. Additionally, the wave field around the station could be reconstructed through the three-dimensional spectrum and the inverse FFT filtering from the analyzed results for the measured radar images. We verified the applicability of the sea surface reconstruction method by comparing the measured and simulated sea surfaces.

Thickness Measurement of Ni Thin Film Using Dispersion Characteristics of a Surface Acoustic Wave (표면파의 분산 특성을 이용한 Ni 박막의 두께 측정)

  • Park, Tae-Sung;Kwak, Dong-Ryul;Park, Ik-Keun;Kim, Miso;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.171-175
    • /
    • 2014
  • In this study, we suggest a method to measure the thickness of thin films nondestructively using the dispersion characteristics of a surface acoustic wave propagating along the thin film surface. To measure the thickness of thin films, we deposited thin films with different thicknesses on a Si (100) wafer substrate by controlling the deposit time using the E-beam evaporation method. The thickness of the thin films was measured using a scanning electron microscope. Subsequently, the surface wave velocity of the thin films with different thicknesses was measured using the V(z) curve method of scanning acoustic microscopy. The correlation between the measured thickness and surface acoustic wave velocity was verified. The wave velocity of the film decreased as the film thickness increased. Therefore, thin film thickness can be determined by measuring the dispersion characteristics of the surface acoustic wave velocity.