• Title/Summary/Keyword: surface-based method

Search Result 5,162, Processing Time 0.038 seconds

A Study on Surface Roughness in Wire Electrical Discharge Machining of STD11 based on Taguchi method (다구찌법에 의한 STD11의 와이어방전가공에서 표면거칠기에 관한 연구)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.3
    • /
    • pp.7-11
    • /
    • 2014
  • The experimental analysis presented aims at the selection of the most optimal machining parameter combination for wire electrical discharge machining (WEDM) of STD11. Based on the Taguchi experimental design ($L_{27}$ orthogonal array) method, a series of experiments were performed by considering time-on, voltage, time-off, wire speed, and flow rate as input parameters. The surface roughness was considered responses. Based on the signal-to-noise (S/N) ratio, the influence of the input parameters on the responses was determined. The optimal machining parameters setting for the minimum surface roughness was found using Taguchi methodology. In order to investigate the effects of process parameters on the surface machined by WEDM, Several experiments are conducted to consider effects of time-on, voltage, time-off, wire speed and flow rate on the surface roughness. Analysis of variance (ANOVA) as well as regression analysis are performed on experimental data. The best results of surface roughness were obtained at higher voltage, lower wire speed, and lower time-on.

Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface (Kirchhoff Surface 변화에 따른 송풍기 소음의 BEM 해석)

  • 박용민;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.772-777
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surfaces on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

The Selection on the Optimal Condition of Si-wafer final Polishing by Combined Taguchi Method and Respond Surface Method (실험계획법을 적용한 웨이퍼 폴리싱의 최적 조건 선정에 관한 연구)

  • Won, Jong-Koo;Lee, Jung-Hun;Lee, Jung-Taik;Lee, Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • The final polishing process is based on slurry, pad, conditioner, equipment. Therefore, the concept of wafer final polishing is also necessary for repeatability of results between polished wafers. In this study, the machining conditions have a pressure, table speed, machining time and slurry ratio. This research investigated the surface characteristics that apply variable machining conditions and response surface methodology was used to obtain more flexible and optimumal condition base on Taguchi method. On the base of estimated response surface curvature from the equation and results of Taguchi method, combined design of experiment was considered to lead to optimumal condition. Finally, polished wafer was obtained mirror like surface.

Extraction of bridge information based on the double-pass double-vehicle technique

  • Zhan, Y.;Au, F.T.K.;Yang, D.
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.679-691
    • /
    • 2020
  • To identify the bridge information from the response of test vehicles passing on it (also known as the indirect approach) has aroused the interest of many researchers thanks to its economy, easy implementation and less disruption to traffic. The surface roughness of bridge remains an obstacle for such method as it contaminates the vehicle response severely and thereby renders many vehicle-response-based bridge identification methods ineffective. This study aims to eliminate such effect with the responses of two different test vehicles. The proposed method can estimate the surface profile of a bridge based on the acceleration data of the vehicles running on the bridge successively, and obtain the normalized contact point response, which proves to be relatively immune to surface roughness. The frequencies and mode shapes of bridge can be further extracted from the normalized contact point acceleration with spectral analysis and Hilbert transform. The effectiveness of the proposed method is verified numerically with a three-span continuous bridge. The influence of measurement noise is also examined.

Improved Response Surface Method Using Modified Selection Technique of Sampling Points (개선된 평가점 선정기법을 이용한 응답면기법)

  • 김상효;나성원;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.248-255
    • /
    • 1993
  • Recently, due to the increasing attention to the structural safety under uncertain environments, many researches on the structural reliability analysis have been peformed. Some useful methods are available to evaluate performance reliability of structures with explicit limit states. However, for large structures, in which structural behaviors can be analyzed with finite element models and the limit states are only expressed implicitly, Monte-Carlo simulation method has been mainly used. However, Monte-Carlo simulation method spends too much computational time on repetitive structural analysis. Many alternative methods are suggested to reduce the computational work required in Monte-Carlo simulation. Response surface method is widely used to improve the efficiency of structural reliability analysis. Response surface method is based on the concept of approximating simple polynomial function of basic random variables for the limit state which is not easily expressed in explicit forms of design random variables. The response surface method has simple algorithm. However, the accuracy of results highly depends on how properly the stochastic characteristics of the original limit state has been represented by approximated function, In this study, an improved response surface method is proposed in which the sampling points for creating response surface are modified to represent the failure surface more adequately and the combined use of a linear response surface function and Rackwitz-Fiessler method has been employed. The method is found to be more effective and efficient than previous response surface methods. In addition more consistent convergence is achieved, Accuracy of the proposed method has been investigated through example.

  • PDF

Deep Learning Based Real-Time Painting Surface Inspection Algorithm for Autonomous Inspection Drone

  • Chang, Hyung-young;Han, Seung-ryong;Lim, Heon-young
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.253-257
    • /
    • 2019
  • A deep learning based real-time painting surface inspection algorithm is proposed herein, designed for developing an autonomous inspection drone. The painting surface inspection is usually conducted manually. However, the manual inspection has a limitation in obtaining accurate data for correct judgement on the surface because of human error and deviation of individual inspection experiences. The best method to replace manual surface inspection is the vision-based inspection method with a camera, using various image processing algorithms. Nevertheless, the visual inspection is difficult to apply to surface inspection due to diverse appearances of material, hue, and lightning effects. To overcome technical limitations, a deep learning-based pattern recognition algorithm is proposed, which is specialized for painting surface inspections. The proposed algorithm functions in real time on the embedded board mounted on an autonomous inspection drone. The inspection results data are stored in the database and used for training the deep learning algorithm to improve performance. The various experiments for pre-inspection of painting processes are performed to verify real-time performance of the proposed deep learning algorithm.

Numerical Analysis of Free Surface Flows Using Adaptable Surface Particle Method based on Grid System (격자기반 적합 표면입자법을 이용한 자유표면유동 수치해석)

  • Shin, Young-Seop
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • In this study, the surface marker method, one of the particle tracking methods, used to track the free surface is extended to cover the more general cases easily including the collision and separation of the free surface. In surface particle method to redistribute particles effectively using the grid system, the free surface is composed of the sum of quadrilaterals having four curves where fixed markers are placed at ends of each curve. Fixed markers are used to know how curves are connected to each other. The position of fixed markers can move as the free surface deforms but all fixed markers cannot be deleted during all time of simulation to keep informations of curve connection. In the case of the collision or separtion of the free surface where several curves can be intersected disorderly, severe difficulties can occur to define newly states of curve connection. In this study, the adaptable surface parTicle method without fixed markers is introduced. Intersection markers instead of the fixed markers are used to define quadrilaterals. The position of the intersection markers is defined to be the intersection point between the free surface and the edge of the grid and it can be added or deleted during the time of simulation to allow more flexibilities. To verify numerical schemes, two flow cases are simulated and the numerical results are compared with other's one and shown to be valid.

A comparison of the neumann-kelvin and rankine source methods for wave resistance calculations

  • Yu, Min;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.371-398
    • /
    • 2017
  • Calm water wave resistance plays a very important role in ship hull design. Numerical methods are meaningful for this reason. In this study, two prevailing methods, the Neumann-Kelvin and the Rankine source method, were implemented and compared. The Neumann-Kelvin method assumes linearized free surface boundary condition and only needs to mesh the hull surface. The Rankine source method considers nonlinear free surface boundary condition and meshes both the ship hull surface and free surface. Both methods were implemented and the wave resistance of a Wigley III and three Series 60(Cb=0.6, 0.7, 0.8) hulls were analyzed. The results were compared with experimental results and the merits of both numerical techniques were quantified. Based on the results, it is concluded that the Rankine source method is more accurate in the calculation of the wave-making resistance. Using the Neumann-Kelvin method, it is found to be easier to model the hull and can be used for slender ships to solve problems like wave current coupling calculation.

Second-order wave radiation by multiple cylinders in time domain through the finite element method

  • Wang, C.Z.;Mitra, S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.317-336
    • /
    • 2011
  • A time domain finite element based method is employed to analyze wave radiation by multiple cylinders. The nonlinear free surface and body surface boundary conditions are satisfied based on the perturbation method up to the second order. The first- and second-order velocity potential problems at each time step are solved through a finite element method (FEM). The matrix equation of the FEM is solved through an iteration and the initial solution is obtained from the result at the previous time step. The three-dimensional (3D) mesh required is generated based on a two-dimensional (2D) hybrid mesh on a horizontal plane and its extension in the vertical direction. The hybrid mesh is generated by combining an unstructured grid away from cylinders and two structured grids near the cylinder and the artificial boundary, respectively. The fluid velocity on the free surface and the cylinder surface are calculated by using a differential method. Results for various configurations including two-cylinder and four-cylinder cases are provided to show the mutual influence due to cylinders on the first and second waves and forces.

Complete 3D Surface Reconstruction from Unstructured Point Cloud (조직화되지 않은 점군으로부터의 3차원 완전 형상 복원)

  • Li Rixie;Kim Seokil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.570-577
    • /
    • 2005
  • In this study a complete 3D surface reconstruction method is proposed based on the concept that the vertices of surface model can be completely matched to the unstructured point cloud. In order to generate the initial mesh model from the point cloud, the mesh subdivision of bounding box and shrink-wrapping algorithm are introduced. The control mesh model for well representing the topology of point cloud is derived from the initial mesh model by using the mesh simplification technique based on the original QEM algorithm, and the parametric surface model for approximately representing the geometry of point cloud is derived by applying the local subdivision surface fitting scheme on the control mesh model. And, to reconstruct the complete matching surface model, the insertion of isolated points on the parametric surface model and the mesh optimization are carried out Especially, the fast 3D surface reconstruction is realized by introducing the voxel-based nearest-point search algorithm, and the simulation results reveal the availability of the proposed surface reconstruction method.