• Title/Summary/Keyword: surface waves

Search Result 1,251, Processing Time 0.029 seconds

A Study On the Cooling Effect of the Floating Horizontal Solar Cell

  • Jae-hyuk Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.182-186
    • /
    • 2023
  • In this study, we measured the power and temperature of the floating horizontal solar cell in a coastal lagoon and compared with those of ground solar cell and water platform solar cell. Because the bottom surface of the floating horizontal solar cell was contacting the water, cooling effect was expected stronger than other cells. As a result of the measurement, the power of floating horizontal cell was 11.7% higher than that of the ground cell and 15% higher than that of the water platform cell. During the measurement, it was observed that water waves were continuously flowed on the top surface of floating horizontal cell by the wind, and it could be assumed that the cooling effect occurred not only on the bottom surface of the cell but also on the top surface. In order to analyze the cooling effect and power increasing of the horizontal cell in the wave situation, we measured power and temperature of the cell while generating artificial waves in a laboratory equipped with Zenon lamp as a solar simulator. At the height of thewater surface, the power of the cell with waves was 3.7% higherthan without waves and temperature was 4.6℃ lower. At 1 cm and 2 cm below the watersurface, power of the cell with waves was decreased by 14% and 11% than without waves while temperature was same . At 3 cm below the water surface, there was no effect of waves.

Multichannel Analysis of Surface Waves (MASW) Active and Passive Methods

  • Park, Choon-Byong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.17-22
    • /
    • 2006
  • Shear modulus is directly linked to material's stiffness and is one of the most critical engineering parameters. Seismically, shear-wave velocity (Vs) is its best indicator. Although methods like refraction, down-hole, and cross-hole shear-wave surveys can be used, they are generally known to be tougher than any other seismic methods in field operation, data analysis, and overall cost. On the other hand, surface waves, commonly known as ground roll, are always generated in all seismic surveys with the strongest energy, and their propagation velocities are mainly determined by Vs of the medium. Furthermore, sampling depth of a particular frequency component of surface waves is in direct proportion to its wavelength and this property makes the surface wave velocity frequency dependent, i.e., dispersive. The multichannel analysis of surface waves (MASW) method tries to utilize this dispersion property of surface waves for the purpose of Vs profiling in 1-D (depth) or 2-D (depth and surface location) format. The active MASW method generates surface waves actively by using an impact source like sledgehammer, whereas the passive method utilizes those generated passively by cultural (e.g., traffic) or natural (e.g., thunder and tidal motion) activities. Investigation depth is usually shallower than 30 m with the active method, whereas it can reach a few hundred meters with the passive method. Overall procedures with both methods are briefly described.

  • PDF

Ultrasonic Evaluation of Worn Surface (초음파를 이용한 마멸표면 평가)

  • 안효석;김두인
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.233-239
    • /
    • 1999
  • The feasibility of an ultrasonic technique using a pulse-echo method of normal-incident compressional waves was evaluated for its sensitivity to the worn surface and near surface damage due to wear. Worn surfaces were generated at various oscillation frequency under a given load and amplitude and these surface were in situ monitored using a ultrasonic wave detection system. Analysis of the ultrasonic waves received from the worn surface revealed a close relationship between the surface and near-surface damage and the maximum echo-amplitude of the compressional waves. The ultrasonic technique was successful in assessing the level of severity of the worn surface in real time during the wear process. It is also shown that the wear depth can be easily measured by the calculation of change of the specimen thickness based on the wave speed measured for the specimen medium.

  • PDF

Ultrasonic Evaluation of Worn Surface (초음파를 이용한 마멸표면 평가)

  • 안효석;김두인
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.351-356
    • /
    • 2000
  • The feasibility of an ultrasonic technique using a pulse-echo method of normal-incident compressional waves was evaluated for its sensitivity to the worn surface and near surface damage due to wear. Worn surfaces were generated at various oscillation frequency under a given load and amplitude and these surface were in situ monitored using a ultrasonic wave detection system. Analysis of the ultrasonic waves received from the worn surface revealed a close relationship between the surface and near-surface damage and the maximum echo-amplitude of the compressional waves. The ultrasonic technique was successful in assessing the level of severity of the worn surface in real time during the wear process. It is also shown that the wear depth can be easily measured by the calculation of change of the specimen thickness based on the wave speed measured for the specimen medium.

Numerical Study for Experiment on Wave Pattern of Internal Wave and Surface Wave in Stratified Fluid (성층화된 유체 내에서 내부파와 표면파의 파형 변화 실험을 위한 수치적 연구)

  • Lee, Ju-Han;Kim, Kwan-Woo;Paik, Kwang-Jun;Koo, Won-Cheol;Kim, Yeong-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.236-244
    • /
    • 2019
  • Internal waves occur at the interface between two layers caused by a seawater density difference. The internal waves generated by a body moving in a two-layer fluid are also related to the generation of surface waves because of their interaction. In these complex flow phenomena, the experimental measurements and experimental set-up for the wave patterns of the internal waves and surface waves are very difficult to perform in a laboratory. Therefore, studies have mainly been carried out using numerical analysis. However, model tests are needed to evaluate the accuracy of numerical models. In this study, the various experimental conditions were evaluated using CFD simulations before experiments to measure the wave patterns of the internal waves and surface waves in a stratified two-layer fluid. The numerical simulation conditions included variations in the densities of the fluids, depth of the two-layer fluid, and moving speed of the underwater body.

PVDF interdigitated transducer for generating and detecting Lamb waves in plates

  • Gu, Hua;Lloyd, George M.;Wang, Ming L.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.291-304
    • /
    • 2008
  • Piezoelectric materials have been widely used in ultrasonic nondestructive testing (NDT). PZT ceramics can be used to receive and generate surface acoustic waves. It is a common application to attach PZT transducers to the surface of structures for detecting cracks in nondestructive testing. However, not until recently have piezoelectric polymers attracted more and more attention to be the material for interdigitated (IDT) surface and guided-wave transducers. In this paper, an interdigitated gold-on-polyvinylidene fluoride (PVDF) transducer for actuating and sensing Lamb waves has been introduced. A specific etching technology is employed for making the surface electrodes into a certain finger pattern, the spacings of which yield different single mode responses of Lamb waves. Experiments have been performed on steel and carbon fiber composite plates. Results from PVDF IDT sensors have been compared with those from PZT transducers for verification.

Comparison of Shear-wave Velocity Sections from Inverting SH-wave Traveltimes of First Arrivals and Surface Wave Dispersion Curves (SH파 초동주시 역산과 표면파 분산곡선 역산으로부터 구한 횡파속도 단면 비교)

  • Lee, Chang-Min;Kim, Ki-Young
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.67-74
    • /
    • 2005
  • Two-dimensional S-wave velocity sections from SH-wave refraction tomography and surface wave dispersions were obtained by inverting traveltimes of first arrivals and surface wave dispersions, respectively. For the purpose of comparison, a P-wave velocity tomogram was also obtained from a P-wave refraction profiling. P and Rayleigh waves generated by vertical blows on a plate with a sledgehammer were received by 100- and 4.5-Hz geophones, respectively. SH-waves generated by horizontal blows on both sides of a 50 kg timber were received by 8 Hz horizontal geophones. The shear-wave signals were enhanced subtracting data of left-side blows from ones of the right-side blows. Shear-wave velocities from tomography inversion of first-arrival times were compared with ones from inverting dispersion curves of Rayleigh waves. Although the two velocity sections look similar to each other in general, the one from the surface waves tends to have lower velocities. First arrival picking of SH waves is troublesome since P and PS-converted waves arrive earlier than SH waves. Application of the surface wave method, on the other hand, is limited where lateral variation of subsurface tructures is not mild.

  • PDF

Study of the Characteristics of Internal Waves in the East (Japan) Sea by Synthetic Aperture Radar-ERS-1/2, RADARSAT, and ENVISAT ASAR

  • Kim Duk-jin;Moon Wooil M.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.689-692
    • /
    • 2004
  • Hydrographic data obtained from several ship experiments have shown that internal waves are frequently observed in the East (Japan) Sea, mostly in the continental slopes located along the western side of the East Sea. It is well known that oceanic internal waves can be detected well in synthetic aperture radar (SAR) images. Interactions between surface capillary-gravity waves and horizontally varying surface currents induced by internal waves produce variations in sea surface roughness which can be detected by SAR. C-band SAR images from ERS, ENVISAT ASAR and RADARSAT have been used to study the characteristics of internal waves in the East Sea. The observed properties of internal waves from many SAR images were compared and verified from in-situ measurements and theories.

  • PDF

OBSERVATIONS BY SATELLITE ALTIMETRY OF SHORT SURFACE WAVE ENERGY IN THE DECEMBER 2004 SUMATRA TSUNAMI

  • Gower, Jim
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.43-46
    • /
    • 2006
  • The main tsunami wave triggered by the December 2004 Sumatra tsunami was detected in the ocean south of India by satellite altimeters on Jason, Topex/Poseidon and Envisat. All three altimeters also detected shorter-wavelength (10 to 100 km), slower-propagating surface waves, spreading from the site of the earthquake. The shorter waves give additional information about the tsunami event, and can be used to better define the generating region in this, and future tsunamis. The properties of the area of shorter tsunami-generated waves may also be important in designing a future satellite-based detection system.

  • PDF

Magnetopause Waves Controlling the Dynamics of Earth's Magnetosphere

  • Hwang, Kyoung-Joo
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Earth's magnetopause separating the fast and often turbulent magnetosheath and the relatively stagnant magnetosphere provides various forms of free energy that generate low-frequency surface waves. The source mechanism of this energy includes current-driven kinetic physical processes such as magnetic reconnection on the dayside magnetopause and flux transfer events drifting along the magnetopause, and velocity shear-driven (Kelvin-Helmholtz instability) or density/pressure gradient-driven (Rayleigh-Taylor instability) magnetohydro-dynamics (MHD) instabilities. The solar wind external perturbations (impulsive transient pressure pulses or quasi-periodic dynamic pressure variations) act as seed fluctuations for the magnetopause waves and trigger ULF pulsations inside the magnetosphere via global modes or mode conversion at the magnetopause. The magnetopause waves thus play an important role in the solar wind-magnetosphere coupling, which is the key to space weather. This paper presents recent findings regarding the generation of surface waves (e.g., Kelvin-Helmholtz waves) at the Earth's magnetopause and analytic and observational studies accountable for the linking of the magnetopause waves and inner magnetospheric ULF pulsations, and the impacts of magnetopause waves on the dynamics of the magnetopause and on the inner magnetosphere.