• Title/Summary/Keyword: surface uniformity

Search Result 682, Processing Time 0.029 seconds

Modeling of Process Plasma Using a Radial Basis Function Network: A Cases Study

  • Kim, Byungwhan;Sungjin Rark
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.268-273
    • /
    • 2000
  • Plasma models are crucial to equipment design and process optimization. A radial basis function network(RBFN) in con-junction with statistical experimental design has been used to model a process plasma. A 2$^4$ full factorial experiment was employed to characterized a hemispherical inductively coupled plasma(HICP) in characterizing HICP, the factors that were varied in the design include source power, pressure, position of shuck holder, and Cl$_2$ flow rate. Using a Langmuir probe, plasma attributes were collected, which include typical electron density, electron temperature. and plasma potential as well as their spatial uniformity. Root mean-squared prediction errors of RBEN are 0.409(10(sup)12/㎤), 0.277(eV), and 0.699(V), for electron density, electron temperature, and Plasma potential, respectively. For spatial uniformity data, they are 2.623(10(sup)12/㎤), 5.704(eV) and 3.481(V), for electron density, electron temperature, and plasma potential, respectively. Comparisons with generalized regression neural network(GRNN) revealed an improved prediction accuracy of RBFN as well as a comparable performance between GRNN and statistical response surface model. Both RBEN and GRNN, however, experienced difficulties in generalizing training data with smaller standard deviation.

  • PDF

Computational Analysis for Effects of Cooling System on Homogeneity of Ice Thickness and Temperature on Water Surface (빙해수조 공냉 시스템 변화에 따른 결빙 균질도 비교 전산해석)

  • Lee, Sungsu;Kim, Young-Min;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.167-174
    • /
    • 2013
  • Model ice forming process in ice tank needs several steps of seeding, freezing, tempering. In those process, one of the most important factors to affect the accuracy of experiment is the homogeneity of the ice thickness and the temperature. This paper investigated a computational and statistical method to assess the uniformity of the model ice. In addition, the different configurations of freezing systems were considered to improve the uniformity. Qualitative assessment using streamlines from the cooling units was carried out by computational fluid dynamics (CFD) and the quantitative evaluations of the homogeneity were compared using the temperature distribution on the ice surface. In addition, multi species transport analysis is introduced to understand the circulation efficiency of cold air from the cooling units. As the results, optimized configurations were determined by adjusting the angles of vane in the cooling units.

Analysis of impingement mixing for coating in injection mold (사출금형 안에서 코팅을 위한 충돌혼합에 관한 해석)

  • Kim, Seul-Woo;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • In-mold Coating is a method that can simultaneously perform injection molding and surface coating in injection mold. The material used for coating is two-component polyurethane which is composed of polyol and isocyanate. L-type mixing head can be used to mix polyol and isocyanate uniformly, and inject them inside the mold cavity. The surface quality of the injection molded products by using in-mold coating depends on the mixing uniformity between main agent and hardener. In this study, flow analysis was performed to design a mixing head for uniform mixing of two-component polyurethane. Especially the effects of design parameters of mixing head on mixing uniformity and nozzle pressure were investigated. The parameters of mixing head were mixing chamber diameter, cleaning cylinder diameter, nozzle alignment angle in the horizontal and vertical direction, and cleaning piston position. It was found that optimal design values were mixing chamber diameter of 3.5 mm, cleaning cylinder diameter of 5.0 mm, nozzle horizontal/vertical alignment angles of 140°/160°, and cleaning piston position of 1.8 mm. The optimal values would be used to develop a two-component mixing head achieving an uniform mixing for in-mold coating.

Electrochemical Deposition of CdSe Nanorods for Photovoltaic Cell (전기도금법을 이용한 태양전지용 CdSe 나노로드 제작)

  • Kim, Seong-Hun;Lee, Jae-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.63-67
    • /
    • 2009
  • CdSe is one of the composite semiconductor materials used in hybrid solar cell. CdSe nanorods were fabricated using electrochemical deposition in anodic aluminum oxide (AAO) template. CdSe were deposited from $CdSO_4$ and $H_2SeO_3$ dissolved aqueous solution by direct current electrochemical deposition. Uniformity of CdSe nanorods were dependent on the diameter and the height of holes in AAO. The current density, current mode, bath composition and temperature were controlled to obtained 1:1 atomic composition of CdSe. CdSe electroplating in AAO is bottom-up filling so we applied direct current is better than others for good uniformity of CdSe nanorods. The optimum conditions to obtain 1:1 atomic composition of CdSe nanorods are direct current $10\;mA/cm^2$, 0.25 M $CdSO_4$-5 mM $H_2SeO_3$ electrolytes at room temperature.

Cu Electroplating on Patterned Substrate and Etching Properties of Cu-Cr Film for Manufacturing TAB Tape (TAB 테이프 제조를 위한 구리 도금 및 에칭에 관한 연구)

  • Kim, N. S.;Kang, T.;Yun, I. P.;Park, Y. S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.3
    • /
    • pp.158-165
    • /
    • 1994
  • Cu-Cr alloy thin film requires good quality of etching be used for TAB technology. The etched cross sec-tion was clean enough when the etching was performed in 0.1M $FeCl_3$ solution at $50^{\circ}C$. The etching rate was increased with the amount of $KMnO_4$. For enhanced profile of cross section and rate, the spray etchning was found to be superior compared to the immersion etching. A series of experiments were performed to improve the uniformity of the current distribution in electrodeposition onto the substrate with lithographic patterns. Copper was electrodeposited from quiescent-solution, paddle-agitated-solution, and air-bubbled-solution to in-vestigate the effect of the fluid flow. The thickness profile of the specimen measured by profilmetry has the non uniformity at feature scale in quiescent-solution, because of the longitudinal vortex roll caused by the natural convection. However, uniform thickness profile was achieved in paddle-agitated or air bubbled solu-tion.

  • PDF

Fabrication and Characterization of Film Type Light Guide Plates by UV Imprint Lithography (UV 임프린팅법에 의한 필름형 광도광판의 제조 및 특성 연구)

  • Kim, Hyeong-Gwan;Kim, So-Won;Lee, Hee-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.178-185
    • /
    • 2016
  • In this study, we have fabricated light guide plates (LGPs) in thin film form for edge type back light unit (BLU) by using UV imprint lithography. In the LGPs, the pattern of functional resins on PC and PMMA substrates were successfully transferred from original master mold through PVC stamp. Optimized pattern arrays with slowly-sloped density were designed to obtain high brightness and uniformity. We could obtain a relatively improved brightness of $950cd/m^2$ and a uniformity of 87.3% by using the NP-S20 functional resins at an input power of 1.3 W because NP-S20 resin could show high formability after UV hardening process. The LGP prepared on polymethylmethacrylate (PMMA) substrate exhibited higher brightness than that on polycarbonate (PC) substrate because PMMA has lower refractive index resulting in more refraction toward the vertical direction.

A study on manufacture and evaluation of CMP pad controllable contact area (접촉 면적을 제어할 수 있는 CMP 패드 제작 방법 및 성능 평가에 관한 연구)

  • Choi, Jae-Young;Kim, Hyoung-Jae;Jeong, Young-Seok;Park, Jae-Hong;Kinoshita, Masaharu;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.247-251
    • /
    • 2004
  • Chemical-Mechanical Polishing(CMP) especially is becoming one of the most important ULSI processes for the 0.25m generation and beyond. And there are many elements affecting CMP performance such as slurry, pad, process parameters and pad conditioning. Among these elements the CMP pad is considered one of the most important because of its change. But the surface of the pad has irregular pores, so there is non-uniformity of slurry flow and of contact area between wafer and the pad, and glazing occurs on the surface of the pad. So we make CMP pad with micro structure using micro molding method. This paper introduces the basic concept and fabrication technique of CMP pad with micro-structure and the characteristic of polishing. Experimental results demonstrate the removal rate, uniformity, and time vs. removal rate.

  • PDF

Formation of fine pitch solder bump with high uniformity by the tilted electrode ring (경사진 전극링을 이용한 고균일도의 미세 솔더범프 형성)

  • Ju, Chul-Won;Lee, Kyung-Ho;Min, Byoung-Gue;Kim, Seong-Il;Lee, Jong-Min;Kang, Young-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.323-327
    • /
    • 2004
  • The bubble flow from the wafer surface during plating process was studied in this paper. The plating shape in the opening of photoresist becomes gradated shape in the fountain plating system, because bubbles from the wafer surface are difficult to escape from the deep openings, vias. So, we designed the tilted electrode ring contact to get uniform bump height on all over the wafer and evaluated the film uniformity by SEM and ${\alpha}-step$. In ${\alpha}-step$ measurement, film uniformities in the fountain plating system and the tilted electrode ring contact system were ${\pm}16.6%,\;{\pm}4%$ respectively.

  • PDF

Design Variables of Chemical-Mechanical Polishing Conditioning System to Improve Pad Wear Uniformity (패드 마모 균일성 향상을 위한 CMP 컨디셔닝 시스템 설계 변수 연구)

  • Park, Byeonghun;Park, Boumyoung;Jeon, Unchan;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Chemical-mechanical polishing (CMP) process is a semiconductor process that planarizes a wafer surface using mechanical friction between a polishing pad and a substrate surface during a specific chemical reaction. During the CMP process, polishing pad conditioning is applied to prevent the rapid degradation of the polishing quality caused by polishing pad glazing through repeated material removal processes. However, during the conditioning process, uneven wear on the polishing pad is inevitable because the disk on which diamond particles are electrodeposited is used. Therefore, the abrasion of the polishing pad should be considered not only for the variables during the conditioning process but also when designing the CMP conditioning system. In this study, three design variables of the conditioning system were analyzed, and the effect on the pad wear profile during conditioning was investigated. The three design variables considered in this study were the length of the conditioner arm, diameter of the conditioner disk, and distance between centers. The Taguchi method was used for the experimental design. The effect of the three design variables on pad wear and uniformity was assessed, and new variables used in conditioning system design were proposed.

Development of Controlled Gas Nitriding Furnace(II) : Controlled Gas Nitriding System and its Hardware (질화포텐셜 제어 가스질화로 개발(II) : 제어시스템 및 하드웨어)

  • Won-Beom Lee;Won-Beom Lee;YuJin Moon;BongSoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.86-95
    • /
    • 2023
  • This paper explained the equipment and process development to secure the source technology of controlled nitrification technology. The nitriding potential in the furnace was controlled only by adjusting the flow rate of ammonia gas introduced into the furnace. In addition, a control system was introduced to automate the nitriding process. The equipment's hardware was designed to enable controlled nitriding based on the conventional gas nitriding furnace, and an automation device was attached. As a result of measuring the temperature and quality uniformity for the equipment, the temperature and compound uniformity were ±1.2℃ and 14.3 ± 0.2 ㎛, respectively. And, it was confirmed that nitriding potential was controlled within the tolerance range of AMS2759-10B standard. In addition to parts for controlled nitriding, it was applied to products produced in existing conventional nitriding furnaces, and as a result, gas consumption was reduced by up to 80%.