• 제목/요약/키워드: surface treatment system

검색결과 1,227건 처리시간 0.024초

산소 플라즈마 처리가 스테인레스 스틸 섬유의 표면 및 인장특성에 미치는 영향 (Effect of Oxygen Plasma Treatment on the Surface and Tensile Properties of Stainless Steel Fibers)

  • 권미연;임대영;이승구
    • 한국염색가공학회지
    • /
    • 제34권2호
    • /
    • pp.102-108
    • /
    • 2022
  • The physicochemical properties of stainless steel fibers which were modified by oxygen plasma treatment were analyzed through microscopy and XPS analysis. The wettability of the surface of the stainless steel fiber was observed by measuring water contact angle to find out the effect of the plasma treatment time on the surface characteristics of the stainless steel fiber. In addition, in order to understand the effect of oxygen plasma treatment on the deterioration of the stainless steel fiber properties, the physical properties due to plasma treatment was investigated by measuring the weight reduction, tensile strength, elongation, tensile modulus of the stainless steel fibers according to the treatment time. As a result, the stainless steel fiber surface was etched by the oxygen plasma and the surface became more wettable by the introduction of hydrophilic functional groups. However the physical properties of the stainless steel fiber were not significantly deteriorated even if the surface of the stainless steel fiber made hydrophilic.

치과용 지르코니아 표면처리방법에 따른 지르코니아와 전장용 도재의 결합강도 관찰 (Shear Bond Strength of Zirconia and Ceramics according to Dental Zirconia Surface Treatment)

  • 이광영;최성민
    • 대한치과기공학회지
    • /
    • 제41권4호
    • /
    • pp.279-285
    • /
    • 2019
  • Purpose: The dental CAD / CAM system has been popular with the development of the digital dental industry. Zirconia is a typical material in dental CAD / CAM systems. Zirconia crowns are classified into single layer and double layer. This study is about the double layer crown of zirconia. The surface roughness, bond strength and fracture patterns of the zirconia surface were observed. Methods: Zirconia blocks were cut using a low speed cutter. Sintered to form a plate shape (6mm × 6mm × 3mm). The prepared specimens were surface treated in four ways. Surface roughness and bond strength were measured. And the fracture pattern was observed. Results: Result of surface treatment of zirconia. The surface roughness test results were as ET 2.87 ㎛, ST 2.67 ㎛, LT 2.44 ㎛, AT 2.41 ㎛, CN 2.08 ㎛ order. Bond Strength results were as LT 25.09 MPa, AT 23.27 MPa, ST 21.27 MPa, ET 21.09 MPa, CN 16.12 MPa order. Fracture patterns showed cohesive failure of 25-50% of the bond area. Conclusion: Surface roughness, bond strength and fracture pattern of the zirconia surface were observed. Etching the surface treatment of zirconia materials has been shown to affect the surface roughness. Zirconia special binder treatment has been shown to affect the bond strength improvement.

전도성 기판의 플라즈마 처리에 따른 염료감응형 태양전지 광전변환 효율 특성 변화 (Photoelectric Conversion Efficiency of DSSC According to Plasma Surface Treatment of Conductive Substrate)

  • 기현철;김선훈;김두근;김태언;홍경진;소순열
    • 한국전기전자재료학회논문지
    • /
    • 제25권11호
    • /
    • pp.902-905
    • /
    • 2012
  • This study is explore the photoelectric conversion change of dye-sensitized solar cells with surface treatment of the conductive substrate. gases of FTO surface treatment were $N_2$, and $O_2$. Treatment conditions of surface were gas flux from 25 sccm to 50 sccm and RF power were from 25 W to 50 W. Treatment time and pressure were fixed 5 min and 100 mtoor. The best sheet resistance and surface roughness were obtained by $O_2$ 50 sccm and 50 W and that result were 7.643 ${\Omega}/cm^2$ and 17.113 nm, respectively. The best efficiency result was obtained by $O_2$ 50 sccm and 50 W and that result of Voc, Jsc, FF and efficiency were 7.03 V, 14.88 $mA/cm^2$, 63.75% and 6.67%, respectively.

내구수명 증진을 위한 콘크리트 구조물용 표면처리공법 개발 (Development of Surface Treatment Systems for Concrete Structures to Extend Service Life)

  • 이창수;윤인석;이규동;박종혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.255-261
    • /
    • 2002
  • Concrete structures stand in poor surrounding than it has ever been met before, because they are installed in severe conditions such as chloride penetration. $CO_2$ gas, water and so on. Therefore, the countermeasure to efficiently protect from the deterioration of concrete structures should be urgently considered. From this point of view, this study was aimed to develop surface treatment systems for concrete structures, which cover physical properties, long term durability and economic consideration. Developing the optimal surface treatment materials, powder type polymer or liquid type polymer was added to inorganic base materials. Three surface treatment materials which had shown best results in primary tests were selected and durability tests were fulfilled. Consequently optimum surface treatment material was developed. The surface treatment materials, which were developed through this study, can efficiently extend the service life of concrete structures. As a result, the life cycle cost should be reduced and the waste of material resources would be cut down.

고출력 다이오드 레이저를 이용한 프레스 전단금형의 경화특성 (Heat Treatment Characteristics of Press Blanking Die by Using High Power Diode Laser)

  • 황현태;소상우;황재현;김종도
    • 열처리공학회지
    • /
    • 제23권5호
    • /
    • pp.257-262
    • /
    • 2010
  • Recently, metal molding has become essential not only for automobile parts, but also mass production, and has greatly influenced production costs as well as the quality of products. Its surface has been treated by carburizing, nitriding and induction hardening, but these existing treatments cause considerable deformation and increase the expense of postprocessing after treatment; furthermore, these treatments cannot be easily applied to parts that requiring the hardening of only a certain section. This is because the treatment cannot heat the material homogeneously, nor can it heat all of it. Laser surface treatment was developed to overcome these disadvantages, and, when the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source.

열처리가 Al-Mg 코팅 강판의 내식성에 미치는 영향 (Effect of Heat Treatment on the Corrosion Resistance of the Al-Mg Coated Steel Sheet)

  • 정재훈;양지훈;송민아;김성환;정재인;이명훈
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.186-191
    • /
    • 2014
  • Double layer films which consisted of aluminum(Al) and magnesium(Mg) have been prepared by e-beam deposition. The structure, alloy phase, and corrosion resistance of the prepared films were investigated before and after heat treatment. The first (bottom) layer fixed with Al, and the thickness ratio between Al and Mg layers has been changed from 1 : 1 to 5 : 1, respectively. Total thickness of Al-Mg film was fixed at $3{\mu}m$. The cold-rolled steel sheet was used as a substrate. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 2, 3 and 10 min. Surface morphology of as-deposited Al-Mg film having Mg top layer showed plate-like structure. The morphology was not changed even after heat treatment. However, cross-sectional morphology of Al-Mg films was drastically changed after heat treatment, especially for the samples heat treated for 10 min. The morphology of as-deposited films showed columnar structure, while featureless structure of the films appeared after heat treatment. The x-ray diffraction data for as-deposited Al-Mg films showed only pure Al and Mg peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ appeared after heat treatment of the films. It is believed that the formation of Al-Mg alloy phase affected the structure change of Al-Mg film. It was found that the corrosion resistance of Al-Mg film was increased after heat treatment.

다이오드 레이저를 이용한 금속 표면 열처리 특성 (Characteristics of Metal Surface Heat Treatment by Diode Laser)

  • 최성대;정선환;김기만;양승철;김잠규
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.16-23
    • /
    • 2007
  • An experimental investigation with diode laser system was carried out to study the effect of surface heat treatment on the die materials(SM45C, SKD11, SK3). The surface heat treatment characteristics of the laser beam are evaluated using hardness tests, optical microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy(EDS). Results indicated that the beam size, focal length, feed rates are changed surface hardened characteristics. SM45C is higher hardness than other materials and composed to martensite grain at hardened zone, whereas other materials(SKD11, SK3)are low hardness than expected and composed to austenite and allayed martensite at hardened zone. The intensive X-ray diffraction patterns of (110)-(200)-(211) is detected hardened surface and the hardened surface distributed plenty of carbon density than metal zone.

  • PDF

아민화 표면 처리된 면직물의 제독 성능 연구 (Detoxification Properties of Surface Aminated Cotton Fabric)

  • 김창규;권웅;정의경
    • 한국염색가공학회지
    • /
    • 제32권2호
    • /
    • pp.73-79
    • /
    • 2020
  • Pursuing the fabric materials for military chemical warfare protective clothing with the improved detoxification properties, this study investigated the simple and effective cotton treatment method using pad-dry-cure process and 3-aminopropyltrimethox ysilane(APTMS) solution for surface amination. Detoxification properties of the untreated and treated cotton fabrics were evaluated via decontamination of chemical warfare agent simulant, DFP(diisopropylfluorophosphate). The surface aminated cotton fabric increased the rate of the hydrolysis of DFP by the factor of 3 and the decontamination ratio reached 88.2% after 24h. Therefore, the surface amination of the cotton fabric with APTMS can be an effective pathway to prepare the material for protective clothing against chemical warfare agents.

Corrosion at the Grain Boundary and a Fluorine-Related Passivation Layer on Etched Al-Cu (1%) Alloy Surfaces

  • Baek, Kyu-Ha;Yoon, Yong-Sun;Park, Jong-Moon;Kwon, Kwang-Ho;Kim, Chang-Il;Nam, Kee-Soo
    • ETRI Journal
    • /
    • 제21권3호
    • /
    • pp.16-21
    • /
    • 1999
  • After etching Al-Cu alloy films using SiCl4/Cl_2/He/CHF3 mixed gas plasma, the corrosion phenomenon at the grain boundary of the etched surface and a passivation layer on the etched surface with an SF6 plasma treatment subsequent to the etching were studied. In Al-Cu alloy system, corrosion occurs rapidly on the etched surface by residual chlorine atoms, and it occurs dominantly at the grain boundaries rather than the crystalline surfaces. To prevent corrosion, the SF6 gas plasma treatment subsequent to etching was carried out. The passivation layer is composed of fluorine-related compounds on the etched Al-Cu surface after the SF6 treatment, and it suppresses effectively corrosion on the surface as the SF6 treatment pressure increases. Corrosion could be suppressed successfully with the SF6 treatment at a total pressure of 300 mTorr. To investigate the reason why corrosion could be suppressed with the SF6 treatment, behaviors of chlorine and fluorine were studied by various analysis techniques. It was also found that the residual chlorine incorporated at the grain boundary of the etched surface accelerated corrosion and could not be removed after the SF6 plasma treatment.

  • PDF

인공습지와 연못시스템을 이용한 오수처리 (Waste Water Treatment Using Constructed Wetland and Pond System)

  • 김민희;윤춘경;함종화
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.470-474
    • /
    • 2001
  • A pilot study was performed at the experimental field of Konkuk University in Seoul, to examine the waste water treatment using constructed wetland and pond system. The effluent of the wetland system in winter often exceeded effluent water quality standards for sewage treatment plant, therefore, pond system could be applied to additional system. As a result, removal rate of $BOD_{5}$, SS was 84.4%, 81.5% and effluent concentration was 4.6mg/L and 5.0mg/L respectively, when surface water of pond system was discharged in March. So we concluded that pond system stored wetland effluent in winter and discharged surface water of pond system in March, so met water quality standard.

  • PDF