DOI QR코드

DOI QR Code

Photoelectric Conversion Efficiency of DSSC According to Plasma Surface Treatment of Conductive Substrate

전도성 기판의 플라즈마 처리에 따른 염료감응형 태양전지 광전변환 효율 특성 변화

  • Ki, Hyun-Chul (Photonic Fusion System Research Center, Korea Photonics Technology Institute) ;
  • Kim, Seon-Hoon (Photonic Fusion System Research Center, Korea Photonics Technology Institute) ;
  • Kim, Doo-Gun (Photonic Fusion System Research Center, Korea Photonics Technology Institute) ;
  • Kim, Tae-Un (Photonic Fusion System Research Center, Korea Photonics Technology Institute) ;
  • Hong, Kyung-Jin (Department of New Reclaimed Energy Engineering, Geangju University) ;
  • So, Soon-Yeol (Department of Electric Engineering, Mok-Po National University)
  • 기현철 (한국광기술원 광융합시스템 연구센터) ;
  • 김선훈 (한국광기술원 광융합시스템 연구센터) ;
  • 김두근 (한국광기술원 광융합시스템 연구센터) ;
  • 김태언 (한국광기술원 광융합시스템 연구센터) ;
  • 홍경진 (광주대학교 신소재에너지공학과) ;
  • 소순열 (목포대학교 전기공학과)
  • Received : 2012.09.25
  • Accepted : 2012.10.19
  • Published : 2012.11.01

Abstract

This study is explore the photoelectric conversion change of dye-sensitized solar cells with surface treatment of the conductive substrate. gases of FTO surface treatment were $N_2$, and $O_2$. Treatment conditions of surface were gas flux from 25 sccm to 50 sccm and RF power were from 25 W to 50 W. Treatment time and pressure were fixed 5 min and 100 mtoor. The best sheet resistance and surface roughness were obtained by $O_2$ 50 sccm and 50 W and that result were 7.643 ${\Omega}/cm^2$ and 17.113 nm, respectively. The best efficiency result was obtained by $O_2$ 50 sccm and 50 W and that result of Voc, Jsc, FF and efficiency were 7.03 V, 14.88 $mA/cm^2$, 63.75% and 6.67%, respectively.

Keywords

References

  1. B. O'egan and M. Gratzel, Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  2. M. Gratzel, Nature, 414, 338 (2001). https://doi.org/10.1038/35104607
  3. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, Sol. Energ. Mat. Sol. C., 77, 89 (2003). https://doi.org/10.1016/S0927-0248(02)00460-9
  4. F. L. Qiu, A. C. Fisher, and A. B. Walker, Electro Chemistry J. Korean Ind. Eng. Chem., 20, 2, (2009).
  5. M. K. Nazeeruddin, A. Kay, R. Humpbry-Baker, E. Miiler, P. Liska, N. Vlachopoulos, and M. Gratzel, Am. Chem. Soc., 115, 6382 (1993). https://doi.org/10.1021/ja00067a063
  6. S. Nakada and S. Yanagida, J. Phys. Chem., B107, 8607 (2003). https://doi.org/10.1021/jp034843z
  7. H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A-M. Hor, and H. Aziz, J. Appl. Phys., 78, 2595 (2001).
  8. C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys., 70, 1348 (1997).
  9. J, H. Yoo, S. C. Gong, .D. B. Shin, I. S. Shin, S. H. Yang, J. G, Chang, and H. J. Chang, Kor. Semi. Disp. Tech. Spring Proceeding (Korea, 2006) p. 259.
  10. I. M. Chan and F. C. N. Hong, Thin Solid Films, 444, 254 (2003). https://doi.org/10.1016/S0040-6090(03)01197-0