• Title/Summary/Keyword: surface textured

Search Result 297, Processing Time 0.024 seconds

Droplet transient migration and dynamic force balance mechanism on vibration-controlled micro-texture surfaces

  • Xu, Jing;Liu, Guodong;Lian, Jiadi;Ni, Jing;Xiao, Jing
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1368-1374
    • /
    • 2018
  • In this paper, forced vibration was used to regulate the droplet migration, fully recording the transient migration of droplets on a micro-textured substrate under the resonance frequency by a high-speed camera. The influence of resonance frequency and dynamic migration characteristics of droplets on the solid micro-texture surface under lateral vibration were researched. The experiment demonstrates that the driving force is caused by the difference between the left and right contact angles made the droplet oscillate and migrate, and as time t increases, the left and right contact points are periodically shifted and the amplitude of migration increases. Therefore, based on the droplet migration behavior and its force balance mechanism, a spring vibration model of migration behavior of the vibrating droplet micro unit was set up to predict the complete trajectory of its migration on a solid surface. The calculation results show that the theoretical displacement is less than the experimental displacement, and the longer the time, the larger the difference. Affected by the vibration, part of the droplet permeates through the micro-texture, resulting in the droplet losing height and the contact angle becoming smaller as well. While the other part of droplet overcomes the internal surface tension to migrate.

Estimating Surface Orientation Using Statistical Model From Texture Gradient in Monocular Vision (단안의 무늬 그래디언트로 부터 통계학적 모델을 이용한 면 방향 추정)

  • Chung, Sung-Chil;Choi, Yeon-Sung;Choi, Jong-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.7
    • /
    • pp.157-165
    • /
    • 1989
  • To recover three dimensional information in Shape from Texture, the distorting effects of projection must be distinguished from properties of the texture on which the distortion acts. In this paper, we show an approximated maximum likelihood estimation method in which we find surface orientation of the visible surface (hemisphere) in gaussian sphere using local analysis of the texture. In addition, assuming that an orthogonal projection and a circle is an image formation system and a texel (texture element) respectively, we drive the surface orientation from the distribution of variation by means of orthogonal projection of a tangent direction which exists regularly in the arc length of a circle. We present the orientation parameters of textured surface with slant and tilt in gradient space, and also the surface normal of the resulted surface orientationas as needle map. This algorithm is applied to geographic contour (artificially generated chejudo) and synthetic texture.

  • PDF

Comparison between natural and anthropogenic soils through fractal dimension analysis (프랙탈 차원 해석을 통한 인위토양과 자연토양 비교)

  • Shin, Kook-Sik;Oh, Taek-Keun;Hur, Seung-Oh;Hyun, Byung-Geun;Cho, Hyun-Joon;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.379-384
    • /
    • 2014
  • In general, fractal analysis which is based on self-similarity as a basic theory has been mainly used to define the characteristics of complex mathematical figures, however, considering its basic theory, it can be also used to analyze the surface ununiformity of unknown materials. In this study, the soil samples were collected from the reclaimed (remodelled) agricultural fields which mean that the external soil is artificially piled up (mainly up to 1m) on the lands, Naju, Jellanam-do and Gumi, Gyeongsangbuk-do, and the conventional agricultural fields, Anseong, Gyeonggi-do and Hwasoon, Jellanam-do, and compared using fractal dimension analysis on the basis of the results of chemical properties. The score of fractal dimension ($D_0$) for organic matter was lower in Hwasoon (1.46) and Naju (1.58) than Anseong (1.86) and Gumi (1.96), and this trend showed similarly in soil pH. On the basis of the results of chemical properties, fine textured-soils (Hwasoon and Naju) and conventional agricultural fields were chemically uniform compared to coarse textured-soils (Anseong and Gumi) and the reclaimed. Therefore, it is required to develop technical methods for integrated soil management to the reclaimed lands.

A Study on the Electrical Characteristic Analysis of c-Si Solar Cell Diodes

  • Choi, Pyung-Ho;Kim, Hyo-Jung;Baek, Do-Hyun;Choi, Byoung-Deog
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.59-65
    • /
    • 2012
  • A study on the electrical characteristic analysis of solar cell diodes under experimental conditions of varying temperature and frequency has been conducted. From the current-voltage (I-V) measurements, at the room temperature, we obtained the ideality factor (n) for Space Charge Region (SCR) and Quasi-Neutral Region (QNR) of 3.02 and 1.76, respectively. Characteristics showed that the value of n (at SCR) decreases with rising temperature and n (at QNR) increases with the same conditions. These are due to not only the sharply increased SCR current flow but the activated carrier recombination in the bulk region caused by defects such as contamination, dangling bonds. In addition, from the I-V measurements implemented to confirm the junction uniformity of cells, the average current dispersion was 40.87% and 10.59% at the region of SCR and QNR, respectively. These phenomena were caused by the pyramidal textured junction structure formed to improve the light absorption on the device's front surface, and these affect to the total diode current flow. These defect and textured junction structure will be causes that solar cell diodes have non-ideal electrical characteristics compared with general p-n junction diodes. Also, through the capacitance-voltage (C-V) measurements under the frequency of 180 kHz, we confirmed that the value of built-in potential is 0.63 V.

Multicrystalline Silicon Texturing for Large Area CommercialSolar Cell of Low Cost and High Efficiency

  • Dhungel, S.K.;Karunagaran, B.;Kim, Kyung-Hae;Yoo, Jin-Su;SunWoo, H.;Manna, U.;Gangopadhyay, U.;Basu, P.K.;Mangalaraj, D;Yi, J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.280-284
    • /
    • 2004
  • Multicrystalline silicon wafers were textured in an alkaline bath, basically using sodium hydroxide and in acidic bath, using mainly hydrofluoric acid (HF), nitric acid $(HNO_3)$ and de-ionized water (DIW). Some wafers were also acid polished for the comparative study. Comparison of average reflectance of the samples treated with the new recipe of acidic solution showed average diffuse reflectance less than even 5 percent in the optimized condition. Solar cells were thus fabricated with the samples following the main steps such as phosphorus doping for emitter layer formation, silicon nitride deposition for anti-reflection coating by plasma enhanced chemical vapor deposition (PECVD) and front surface passivation, screen printing metallization, co-firing in rapid thermal processing (RTP) Furnace and laser edge isolation and confirmed >14 % conversion efficiency from the best textured samples. This isotropic texturing approach can be instrumental to achieve high efficiency in mass production using relatively low cost silicon wafers as starting material.

  • PDF

Preparation of $Yb_2O_3$ Film by MOCVD Method (MOCVD 공정을 이용한 $Yb_2O_3$ 박막 제조)

  • Jung, Woo-Young;Jun, Byung-Hyuk;Park, Hai-Woong;Hong, Gye-Won;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 2006
  • [ $Yb_2O_3$ ] films were successfully deposited on a cube-textured Ni and(100) $SrTiO_3$(STO) single crystal substrates by metal organic chemical vapor deposition(MOCVD) method using $H_2O$ vapor as an oxidant. $H_2O$ vapor was used in order to avoid the oxidation of Ni substrate. The working pressure and Ar flow rate were 10 Ton and 600 sccm, respectively. $Yb_2O_3$ films on STO were formed at high temperatures above $900^{\circ}C$. While XRD peaks from $Yb_2O_3$ were hardly detected at $900^{\circ}C$, the $Yb_2O_3$(400) texture was developed fur the films grown at deposition temperatures above $950^{\circ}C$. The AEM surface roughness of $Yb_2O_3$ film, grown on STO, was in the range of $6{\sim}10nm$ for the film deposited at $950^{\circ}C$ with a $H_2O$ vapor partial pressure of 5.5 Ton and deposition times of 3 and 5 mins. For cube-textured Ni substrate, both $Yb_2O_3$(222) and $Yb_2O_3$ (400) textures were developed textures at deposition temperatures above $850^{\circ}C$.

  • PDF

Epitaxial growth of buffer layers for superconducting coated conductors (초전도 선재용 완충층의 결정성장 연구)

  • Chung, Kook-Chae;Yoo, Jai-Moo;Kim, Young-Kuk;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.5-8
    • /
    • 2007
  • All three buffer layers of $Y_2O_3$, YSZ, and $CeO_2$ have been deposited on the biaxially textured metal substrates using rf-sputtering method, The first 50-70nm thick $Y_2O_3$ films were grown epitaxially on biaxially textured metal substrates as a seed layer and followed by the diffusion barrier ${\sim}100nm$ thick YSZ and subsequent capping layer ${\sim}200nm$ thick $CeO_2$ deposited epitaxially on top of $Y_2O_3$ seed layer. The epitaxial orientation of all three layers were all (100) grown with rocking curve Full Width at Half Maximum(FWHM) of $4-5^{\circ}$ and in plane phi-scan FWHM of $6-8^{\circ}$ using X -ray diffraction analysis. The NiO phases formed during the $Y_2O_3$ seed layer deposition seem to degrade the crystallinity and roughen the surface morphology of the following layer observed by AFM(Atomic Force Microscopy). The buffered tapes were used as substrates for long length YBCO coated conductors with high critical current density $J_c$. The five multi-turn of metal tapes was employed to increase the thickness of films and production rate to compensate the low growth rate of rf-sputtering method.

Highly Oriented Textured Diamond Films on Si Substrate though 2-step Growth Method (2단계 성장법을 통한 근사단결정의 다이아몬드 박막 합성)

  • Kim, Do-Geun;Seong, Tae-Yeon;Baek, Yeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1049-1054
    • /
    • 1999
  • Two-step growth method is suggested to enhance the alignment of highly oriented diamond films. (100) Si wafers are pretreated with negative biasing of - 200 V at $850^{\circ}C$ for 20 min with 4 % methane in hydrogen plasma. The pretreated wafers are grown under the lst-step growth conditions(2 % CH$_4$ in H$_2$, $810^{\circ}C$) from 2 hr to 35 hr, in order to obtain <100> textured films. The 2nd-step growth(2 % CH$_4$ in H$_2$, $850^{\circ}C$) is carried out to make diamond films having (100) growth planes, which are parallel to the substrate. The alignment of the films after the 1st-step growth, has been analyzed by {111} X-ray pole figure, which is improved abruptly with increasing film thickness. However, the pyramidal surface morphology is inevitable. These morphology is flattened after the 2nd-step growth by developing the (100) facets parallel to the substrate. The alignment of the highly oriented textured films after the two-step growth depends on the thickness of the 1st-step growth film.

  • PDF

Evaluation on Resistance Spot Weldability and Nugget Formation of Surface Roughness Treated Steel Sheet (표면조도 특성에 따른 저항 점 용접성 평가 및 너깃 형성 고찰)

  • Kim, Ki-Hong;Choi, Yung-Min;Kim, Young-Seok;Rhym, Young-Mok;Yu, Ji-Hun;Kang, Nam-Hyun;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.26 no.5
    • /
    • pp.79-89
    • /
    • 2008
  • With the increased use of surface textured steel sheet in body-in-white assembly, resistance spot weldability of these steels is considered to be an important subject. This study evaluated nugget formation and weldability by measuring dynamic resistance with various weld pressure, current, and weld time for steel sheet with two different surface roughnesses. The surface roughness for T-H steel ($R_{a}=1.70\;{\mu}m$) was higher than that for T-L steel ($R_{a}=1.33\;{\mu}m$), and resulted in increased contact resistance and heating for T-H steel spot welding. Therefore, at low weld current and weld cycle ranges, the T-H steel showed better weldability over the T-L steel. The evaluations of weld interface showed that the fusion zone in the T-H steel sheet was continuous in contrast to discontinuous fusion zone for T-L steel sheet at the same welding conditions. A comparison of dynamic resistance and tensile-shear strength (TSS) between T-H and T-L steel sheet suggested that high surface roughness provided larger heating at early cycle of welding and larger TSS.

(100) Textured Si Films with Controlled Microstructures Obtained via Hybrid SLS

  • Wilt, P.C. Van Der;Chitu, A.M.;Turk, B.A.;Chung, U.J.;Limanov, A.B.;Im, James S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.768-771
    • /
    • 2006
  • Uniformity and performance characteristics of LTPS TFTs are important parameters for making advanced active-matrix displays. In this paper, we describe an SLS-based crystallization approach for producing orientation-controlled Si films with reduced concentrations of planar defects that stand to potentially deliver unprecedented levels of device uniformity and performance. Specifically, a 2-step process referred to as hybrid SLS has been developed that produces a variety of high-quality {100} surface-oriented Si films.

  • PDF