• Title/Summary/Keyword: surface tension reduction ratio

Search Result 10, Processing Time 0.026 seconds

Effect of Si on Spatter Generation and Droplet Transfer Phenomena of MAG Wwlding (MAG 용접의 스패터 발생 및 용적이행현상에 미치는 Si의 영향)

  • 안영호;이종봉;엄동석
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of Si content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80% Ar-20% $CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with Si content of wire. With increasing Si content, the spattering ratio and the ratio of large size spatter $(d\geq1.0mm)$ were increased. The increase of Si content in molten metal made surface tension increase due to reduction of oxygen content, which resulted from deoxidizing action of silicon. The increase of surface tension resulted in unstable transfer phenomena and arc instability in both short circuit and spray region. With changing Si content of wire, spattering characteristics and droplet transfer phenomena was directly influenced by the variation of surface tension, compared with the effect of arc stability.

  • PDF

A Study on the Prediction and Reduction of Residual Stress in Glass (I): Analysis of Residual Stress in Glass by Instant Freezing Model (유리의 잔류응력 예측 및 감소화 방안 연구(I): 순간동결모델에 의한 유리의 잔류응력 해석)

  • 이재춘;백태현
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.902-910
    • /
    • 1994
  • Residual stress measurements were made for cylindrical glass rods to compare experimental results with the calculated values obtained by Instant Freezing Model. According to the photoelastic measurements, the stress ratio of surface compression and center tension was increased from 1.4 to 2.0 as the heat-treatment temperature was lowered, the fictitious forzen temperature was found to be closer to the heat-treatment temperature and the fictitious coefficient was increased.

  • PDF

Optimization Using 33 Full-Factorial Design for Crude Biosurfactant Activity from Bacillus pumilus IJ-1 in Submerged Fermentation

  • Kim, Byung Soo;Kim, Ji Yeon
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.48-56
    • /
    • 2020
  • This study aimed to optimize the culture conditions to improve the crude biosurfactant activity of Bacillus pumilus IJ-1, using a 33 full-factorial design of response surface methodology (RSM). It was found that submerged fermentation of B. pumilus improved the activity of the crude biosurfactant. The factors selected for optimization were NaCl concentration, temperature, and tryptone concentration. Response surface analysis revealed that the fitted quadratic model was statistically significant and produced an adequate R2 value (0.9898) and a low probability value (<0.0001). The optimum level for each factor was found to be 0.567% (w/v) NaCl, 21.851℃ and 0.765% (w/v) tryptone, respectively. Crude biosurfactant activity was found to be most affected by tryptone concentration; then temperature, and finally NaCl concentration. Our results may potentially facilitate large-scale biosurfactant production from B. pumilus IJ-1.

Characterization of a Novel Lipopolysaccharide Biosurfactant from Klebsiella oxitoca

  • Kim, Pil;Kim, Jung-Hoe
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.494-499
    • /
    • 2005
  • The chemical, physical, and emulsifying properties of BSF-1, which is an extracellular lipopolysaccharide biosurfactant produced by Klebsiella oxytoca strain BSF-1, were studied. BSF-1 was found to be composed mainly of carbohydrate and fatty acids. The average molecular weight was $1,700{\sim}2,000 kDa$. The polysaccharide fraction contained L-rhamnose, D-galactose, D-glucose, and D-glucuronic acid at a molar ratio of 3:1: 1:1. The fatty acid content was 1.1 % (w/w) and consisted mainly of palmitic acid (C16:0), 3-hydroxylauric acid (3-OH-C12:0), and lauric acid (C12:0). In terms of thermal properties, BSF-1 was revealed to have inter- and intra-molecular hydrogen bonds. The hydrodynamic volume (intrinsic viscosity) of BSF-1 was 22.8dL/g. BSF-1 could be maintained as a stable emulsion for 48 h through a low-level reduction in surface tension. The optimal emulsification temperature was $30^{\circ}C$. Emulsification by BSF-1 was efficient at both acidic and neutral pH values.

Experimental Study on the Slip Coefficient with Member Type and Dimensions of High Tension Bolt Hole (부재 및 고장력볼트 구멍치수에 따른 미끄러짐계수의 실험적 연구)

  • Yang, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4277-4283
    • /
    • 2012
  • Slip coefficient, whose value is dependent on the condition of contact surface at the friction joint of high tension bolt, is determined by slip load. Because contact area affects slip load, contact area that varies with bolt hole size is also related to the slip coefficient. In this study, we manufactured 32 specimens and performed bending and tension tests in order to examine changes in slip coefficient and load with material type, bolt diameter, and size of bolt hole. Slip load of specimens with oversize bolt hole had strength that was more than 80% higher than the slip load of specimens with standard bolt hole, and it also exceeded the design slip strength. In addition, we observed significant correlation between net-section ratio and slip ratio of specimens with oversize and standard bolt hole. However, some differences between the specimens are thought to have been caused by reduction in initial axial force of high tension bolt, which is an important parameter of slip coefficient. It is self-evident that increased bolt hole size would lead to decrease in design strength as it reduces both slip coefficient and bolt axial force. Nevertheless, we suggest that some flexibility in regulation of bolt hole, as long as it does not threaten the structural stability, may be a positive factor in terms of workability and efficiency.

Experiment Investigation on Fluid Transportation Performance of Propellant Acquisition Vanes in Microgravity Environment

  • Zhuang, Baotang;Li, Yong;Luo, Xianwu;Pan, Halin;Ji, Jingjing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The propellant acquisition vane (PAV) is a key part of a vane type surface tension propellant management device (PMD), which can manage the propellant effectively. In the present paper, the fluid transportation behaviors for five PAVs with different sections were investigated by using microgravity drop tower test. Further, numerical simulation for the propellant flow in a PMD under microgravity condition was also carried out based on VOF model, and showed the similar flow pattern for PAVs to the experiment. It is noted that the section geometry of PAVs is one of the main factors affecting the fluid transportation behavior of PMD. PAVs with bottom length ratio of 5/6 and 1/2 have larger propellant transportation velocity. Based on the experiments, there were two stages during the process of propellant transportation under microgravity environment: liquid relocation and steady transportation stage. It is also recognized that there is a linear correlation between liquid transportation velocity and relative time's square root. Those results can not only provide a guideline for optimization of new vane type PMDs, but also are helpful for fluid control applications in space environment.

Foam Separation of Bovine Serum Protein Fractions (소 혈청 단백질 분획들의 기포분리 현상에 관한 연구)

  • Lee, Boo-Yong;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.225-230
    • /
    • 1987
  • The foam separation of bovine serum proteins was investigated and the protein fractionation by foam separation was analyzed by PAG electrophoresis. The protein concentration for the surface excess formation of bovine serum was in the range of $20-800\;{\mu}g/ml$. At pH 5, the foamate volume was maximum, but the enrichment ratio minimum. As the temperature was elevated, the foamate volume decreased and the enrichment ratio increase. As the gas flow rate increased from 25 to 100 ml/min, the foamate volume decreased and the enrichment ratio increased. The enrichment ration became maximum when the added ionic strength of serum solution was in the range of 1-3 by the addition of different types of salts, and this was related to the reduction of surface tension of the solution. In general, BSA, ${\alpha}_1$, and ${\alpha}_2-globulins$, which have relatively small molecular weight and high hydrophobicity, moved easily to the foam, and the separation of protein fractions in the serum varied with the changes in pH, temperature, gas flow rate and ionic strength of the solution.

  • PDF

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.

Studies on the Effect of Fiber Reinforcing upon Mechanical Properties of Concrete and Crack Mode of Reinforoed Concrete (섬유보강이 콘크리트의 역학적 특성과 철근콘크리트의 균열성상에 미치는 영향에 관한 연구)

  • 박승범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.2
    • /
    • pp.4645-4687
    • /
    • 1978
  • This study was attempted to investigate the mechanical properties of concrete and crack control effects of reinforced concrete with steel and glass fiber. The experimental program includes tests on the properties of fresh concrete containing fibers, compressive strength, tensile strength, flexural strength, Young's modulus, Shrinkage and deformation of steel or glass fiber reinforced concrete. Also this study was carried out to investigate the effect of steel or glass fiber to retard the development in reinforced concrete subject to uniaxial tension and thus facilitate the use of steels of higher strength. The major conclusions that can be drawn from the studies are as follows: 1. The effect of the fibers in various mixes on fresh concrete confirmed that fibers do have a significant effect on the properties of fresh concrete, bringing much more stable and exhibiting a signiflcant reduction in surface bleeding, and that the cohesion is greatly improved and the internal resistance increases with fiber concentration. But the addition of an excess contents and length of fibers brings about the reduction of workability. 2. With the addition of steel fibers(1.5% Vol.) to concrete, the compressive strength as compared with plain concrete showed a very slight increase, but excess addition, over 1.5% Vol. of steel and glass fiber reduced its strength. 3. Splitting tensile strength of fiber reinforced concrete showed a significant increase tendency, as compared with plain concrete. In case of containing steel fiber (2.5%, 30mm), it showed that the maximum increase rate of 1.48 times as much rate, and in case of containing glass fiber (2.5%, 30mm), the increase rate of strength was 1.25 times as much rate. 4. Flexural strength of fiber reinforced concrete showed a significant tendency, as compared with plain concrete. Containing steel fiber (2.5%, 30mm) showed the maximum increase rate of 1.64 times as much rate and containing glass fiber (2.5%, 30mm) showed the increase rate of strength of 1.32 times as much rate, and in general, the 30mm length brougth the best results. 5. The strength ratio ($\sigma$b/$\sigma$c and $\sigma$t/$\sigma$c) increased, when steel fiber's average spacing was up to 3.05mm, but decreased when beyond 3.05mm, and it was confirmed that tensile or flexural strengths of steel fiber reinforced concrete are apparently governed by fiber's average spacing. 6. The compressive strain of fiber reinforced concrete showed a significant increasing tendency as the fiber was added, but Young's modulus. with the addition of steel and glass fibers, showed a slight decrease tendency. And according to the increase of flexural strength, a considerable increase was seen in toughness. 7. With the addition of fiber's the shrinkage of concrete was significantly decreased, in both case of adding steel fibers 12.5%, 30mm, and showed a significant decrease ratio, in average 30.4% and 36.7%, as compared with plain concrete. 8. With the increase of fiber volume fraction and length, the gained stress in reinforcing bar in concrete specimens increased in all crack widths, but at different rates, with the decrease of fiber diameter, the stress showed a considerable increasing tendency. And the duoform steel fibers showed the greatest improvement, as compared with the other types tested. 9. The influence of fiber dimensions in order of significanse on the machanical properties of concrete and the crack control of reinforced concrete was explained as follows: content, length, aspect ratio and dimeter.

  • PDF

Development of Pilot-Scale Manufacturing Process of SiC Fiber from Polycarbosilane Precursor with Excellent Mechanical Property at Highly Oxidation Condition and High Temperature (폴리카보실란 전구체로부터 고온 산화성분위기서 기계적물성이 우수한 파이롯-규모의 탄화규소섬유 제조공정 개발)

  • Yoon, B.I.;Choi, W.C.;Kim, J.I.;Kim, J.S.;Kang, H.G.;Kim, M.J.
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.116-125
    • /
    • 2017
  • The purpose of this study is to develop silicon carbide fiber showing an excellent mechanical properties under highly oxidative conditions at high temperature. Polycarbosilane(PCS) as a preceramic precursor was used for making the SiC fiber. PCS fiber was taken by melt spinning method followed by melting the PCS at $300{\sim}350^{\circ}C$ in N2 gas. The Curing of PCS fiber was carried out in air oxygen chamber, prior to high temperature pyrolysis. Degree of cure was calculated by characteristic peak's ratio of Si-H to $Si-CH_3$ in FT-IR spectra before and after curing of PCS fiber. The properties of SiC fiber was affected greatly by the degree of cure. The SiC fiber produced by controlling fiber tension during heat treatment showed good properties. The SiC fiber exposed to $1000^{\circ}C$ at air from 1 min. up to maximum 50 hrs showed around 60% reduction in tensile strength. We found that large amount of carbon content on the fiber surface after long-term exposure has resulted in lower tensile strength.