• Title/Summary/Keyword: surface structure control

Search Result 836, Processing Time 0.031 seconds

A Preliminary Design for Hybrid Building System with Progressive Collapse Prevention Means (연속붕괴가 방지된 초고층 복합빌딩시스템의 예비설계)

  • Choi, Ki-Bong;Cho, Tae-Jun;Kim, Seong-Soo;Lee, Jin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.48-54
    • /
    • 2015
  • In this study, we propose an innovative lateral force distribution building system between tall buildings by utilizing the difference of moment of inertia, resulting the reduction of lateral displacement and the lateral forces in terms of an alternative for the dense human and increased cost of lands in highly integrated city area. A successive collapse prevention means by providing additional bearing plate between connections is proposed. In addition to that, a more economical vibration reduction is expected due to the suggested tuned mass damper on the surface of spacial structure. In the considered verification examples, reduced drifts at the top location of the building systems are validated against static wind pressure loads and static earthquake loads. The suggested hybrid building system will improve the safety and reliability of the new or existing building system in terms of more than 30% reduced drift and vibration through the development of convergence of tall buildings and spatial structures.

Study on Cracking Causes and Patterns in Median Barrier and Guardrail Concrete in RC Bridge (콘크리트 교량 방호벽의 균열원인 및 패턴 분석에 대한 연구)

  • Choi, Se-Jin;Choi, Jung-Wook;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • Concrete guide rail and median barrier are an attached RC member, however they are vulnerable to cracking due to slip form construction and large surface of member. In this study, causes and pattern of cracking are analyzed through assessment and NDT (Non-Destructive Technique) evaluation for concrete guide rail and median barrier on highway structure. For this work, analysis on drying shrinkage and hydration heat are performed considering installation period, and plastic shrinkage is also analyzed considering their environmental conditions. From the evaluation, plastic settlement around steel location, drying/ plastic shrinkage, and aggregate segregation are inferred to be the main causes of cracking in the structures. The crack causes and patterns are schematized and techniques of crack-control are suggested. Furthermore concrete guide rail/ median barrier in the bridge on the sea are vulnerable to cracking at early age so that special attentions should be paid at the stages of material selection and construction.

Characteristics of TiO2 Nanotube Gas Sensor Preparedby Hydrothermal Treatment (수열처리에 의한 TiO2 나노 튜브 센서의 가스 검지 특성)

  • Seo, Min-Hyun;Oh, Sang-Jin;Kida, Tetsuya;Shimanoe, Kengo;Huh, Jeung-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.437-441
    • /
    • 2007
  • Preparation and morphology control of $TiO_2$ nano powders for gas sensor applications are investigated. $TiO_2$ nanopowders with rutile and anatase structures were prepared by controlling the pH value of a precursor solution without any heat treatment. The mean particle size of $TiO_2$ powders were below 10nm. The prepared $TiO_2$ nano powders were hydrothermal treated by NaOH solution. The sample was washed in HCl solution. As a result and $TiO_2$ nanotubes were formed. The lengths of $TiO_2$ nanotube were $1{\mu}m$ and the diameters were 10nm. Crystal structure and microstructure of $TiO_2$ nanotube were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). As-prepared $TiO_2$ nanotube powders have several advantages of nano particle size and high surface area and could be a prominent candidate for nano-sensors. The sensitivity of $TiO_2$ nanotube sensor was measured for toluene and NO in this study.

Anatomical Study on the Heart Meridian Muscle in Human

  • Park Kyoung-Sik
    • The Journal of Korean Medicine
    • /
    • v.26 no.1 s.61
    • /
    • pp.11-17
    • /
    • 2005
  • This study was carried out to identify the components of the human heart meridian muscle, the regional muscle group being divided into outer, middle, and inner layers. The inner parts of the body surface were opened widely to demonstrate muscles, nerves, blood vessels and to expose the inner structure of the heart meridian muscle in the order of layers. We obtained the following results; $\cdot$ The heart meridian muscle is composed of muscles, nerves and blood vessels. $\cdot$ In human anatomy, the difference between terms is present (that is, between nerves or blood vessels which control the meridian muscle and those which pass near by). $\cdot$ The inner composition of the heart meridian muscle in the human arm is as follows: 1) Muscle H-l: latissimus dorsi muscle tendon, teres major muscle, coracobrachialis muscle H-2: biceps brachialis muscle, triceps brachialis muscle, brachialis muscle H-3: pronator teres muscle and brachialis muscle H-4: palmar carpal ligament and flexor ulnaris tendon H-5: palmar carpal ligament & flexor retinaculum, tissue between flexor carpi ulnaris tendon and flexor digitorum superficialis tendon, flexor digitorum profundus tendon H-6: palmar carpal ligament & flexor retinaculum, flexor carpi ulnaris tendon H-7: palmar carpal ligament & flexor retinaculum, tissue between flexor carpi ulnaris tendon and flexor digitorum superficial is tendon, flexor digitorum profundus tendon H-8: palmar aponeurosis, 4th lumbrical muscle, dorsal & palmar interrosseous muscle H-9: dorsal fascia, radiad of extensor digiti minimi tendon & extensor digitorum tendon 2) Blood vessel H-1: axillary artery, posterior circumflex humeral artery H-2: basilic vein, brachial artery H-3: basilic vein, inferior ulnar collateral artery, brachial artery H-4: ulnar artery H-5: ulnar artery H-6: ulnar artery H-7: ulnar artery H-8: palmar digital artery H-9: dorsal digital vein, the dorsal branch of palmar digital artery 3) Nerve H-1: medial antebrachial cutaneous nerve, median n., ulnar n., radial n., musculocutaneous n., axillary nerve H-2: median nerve, ulnar n., medial antebrachial cutaneous n., the branch of muscular cutaneous nerve H-3: median nerve, medial antebrachial cutaneous nerve H-4: medial antebrachial cutaneous nerve, ulnar nerve H-5: ulnar nerve H-6: ulnar nerve H-7: ulnar nerve H-8: superficial branch of ulnar nerve H-9: dorsal digital branch of ulnar nerve.

  • PDF

Structural, Optical and Photoconductive Properties of Chemically Deposited Nanocrystalline CdS Thin Films

  • Park, Wug-Dong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.164-168
    • /
    • 2011
  • Nanocrystalline cadmium sulphide (CdS) thin films were prepared using chemical bath deposition (CBD), and the structural, optical and photoconductive properties were investigated. The crystal structure of CdS thin film was studied by X-ray diffraction. The crystallite size, dislocation density and lattice constant of CBD CdS thin films were investigated. The dislocation density of CdS thin films initially decreases with increasing film thickness, and it is nearly constant over the thickness of 2,500 ${\AA}$. The dislocation density decreases with increasing the crystallite size. The Urbach energies of CdS thin films are obtained by fitting the optical absorption coefficient. The optical band gap of CdS thin films increases and finally saturates with increasing the lattice constant. The Urbach energy and optical band gap of the 2,900 A-thick CdS thin film prepared for 60 minutes are 0.24 eV and 2.83 eV, respectively. The activation energies of the 2,900 ${\AA}$-thick CdS thin film at low and high temperature regions were 14 meV and 31 meV, respectively. It is considered that these activation energies correspond to donor levels associated with shallow traps or surface states of CdS thin film. Also, the value of ${\gamma}$ was obtained from the light transfer characteristic of CdS thin film. The value of ${\gamma}$ for the 2,900 A-thick CdS thin film was 1 at 10 V, and it saturates with increasing the applied voltage.

Simulation of the Combined Effects of Dipole Emitter Orientation, Mie Scatterers, and Pillow Lenses on the Outcoupling Efficiency of an OLED (쌍극자 광원의 진동방향, Mie 산란자, 그리고 Pillow 렌즈가 OLED의 광추출효율에 미치는 영향에 대한 시뮬레이션 연구)

  • Lee, Ju Seob;Lee, Jong Wan;Park, Jaehoon;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.4
    • /
    • pp.193-199
    • /
    • 2014
  • The net effect of the emitter orientation, Mie scatters, and pillow lenses on the outcoupling efficiency (OCE) of a bottom-emitting OLED having an internal photonic crystal layer was investigated by a combined optical simulation based on the finite-difference time-domain method (FDTD) and the ray-tracing technique. The simulation showed that when the emitter orientation was horizontal with respect to the OLED surface, the OCE could be increased by 54% when a photonic crystal layer was employed, while it could be improved by 86% under optimized conditions of Mie scatters and pillow lenses applied to the glass substrate. The peculiar intensity distribution of the OLED, caused by the periodic lattice structure of the photonic crystal layer, could be ameliorated by inserting Mie scatters into the glass substrate. This study suggests that conventional outcoupling structures combined with control of the emitter orientation could improve the OCE substantially.

Ultralow-n SiO2 Thin Films Synthesized Using Organic Nanoparticles Template

  • Dung, Mai Xuan;Lee, June-Key;Soun, Woo-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3593-3599
    • /
    • 2010
  • In an original effort, this lab attempted to employ polystyrene nanoparticles as a template for the synthesis of ordered and highly porous macroporous $SiO_2$ thin films, utilizing their high combustion temperature and narrow size distribution. However, polystyrene nanoparticle thin films were not obtained due to the low interaction between individual particles and between the particle and silicon substrate. However, polystyrene-polyacrylic acid (PS-AA) colloidal particles of a core-shell structure were synthesized by a one-pot miniemulsion polymerization approach, with hydrophilic polyacrylic acid tails on the particle surface that improved interaction between individual particles and between the particle and silicon substrate. The PS-AA thin films were spin-coated in the thickness ranges from monolayer to approximately $1.0\;{\mu}m$. Using the PS-AA thin films as sacrificial templates, macroporous $SiO_2$ thin films were successfully synthesized by vapor deposition or conventional solution sol-gel infiltration methods. Inspection with field emission scanning electron microscopy (FE-SEM) showed that the macroporous $SiO_2$ thin films consist of interconnected air balls (~100 nm). Typical macroporous $SiO_2$ thin films showed ultralow refractive indices ranging from 1.098 to 1.138 at 633 nm, according to the infiltration conditions, which were confirmed by spectroscopy ellipsometry (SE) measurements. This research shows how the synthetic control of the macromolecule such as hydrophilic polystyrene nanopaticles and silicate sol precursors innovates the optical properties and processabilities for actual applications.

Effect of biofilm formation, and biocorrosion on denture base fractures

  • Sahin, Cem;Ergin, Alper;Ayyildiz, Simel;Cosgun, Erdal;Uzun, Gulay
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.140-146
    • /
    • 2013
  • PURPOSE. The aim of this study was to investigate the destructive effects of biofilm formation and/or biocorrosive activity of 6 different oral microorganisms. MATERIALS AND METHODS. Three different heat polymerized acrylic resins (Ivocap Plus, Lucitone 550, QC 20) were used to prepare three different types of samples. Type "A" samples with "V" type notch was used to measure the fracture strength, "B" type to evaluate the surfaces with scanning electron microscopy and "C" type for quantitative biofilm assay. Development and calculation of biofilm covered surfaces on denture base materials were accomplished by SEM and quantitative biofilm assay. According to normality assumptions ANOVA or Kruskal-Wallis was selected for statistical analysis (${\alpha}$=0.05). RESULTS. Significant differences were obtained among the adhesion potential of 6 different microorganisms and there were significant differences among their adhesion onto 3 different denture base materials. Compared to the control groups after contamination with the microorganisms, the three point bending test values of denture base materials decreased significantly (P<.05); microorganisms diffused at least 52% of the denture base surface. The highest median quantitative biofilm value within all the denture base materials was obtained with P. aeruginosa on Lucitone 550. The type of denture base material did not alter the diffusion potential of the microorganisms significantly (P>.05). CONCLUSION. All the tested microorganisms had destructive effect over the structure and composition of the denture base materials.

CdSe Nanocrystal Quantum Dots Based Hybrid Heterojunction Solar Cell

  • Jeong, So-Myung;Eom, S.;Park, H.;Lee, Soo-Hyoung;Han, Chang-Soo;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.93-93
    • /
    • 2010
  • Semiconductor nanocrystal quantum dots (NQDs) have recently attracted considerable interest for use in photovoltaics. Band gaps of NQDs can be tuned over a considerable range by varying the particle size thereby allowing enhance absorption of solar spectrum. NQDs, synthesized using colloidal routes, are solution processable and promise for a large-area fabrication. Recent advancements in multiple-exciton generation in NQD solutions have afforded possible efficiency improvements. Various architectures have attempted to utilize the NQDs in photovoltaics, such as NQD-sensitized solar cell, NQD-bulk-heterojuction solar cell and etc. Here we have fabricated CdSe NQDs with the band gap of 1.8 eV to 2.1 eV on thin-layers of p-type organic crystallites (1.61 eV) to realize a donor-acceptor type heterojuction solar cell. Simple structure as it was, we could control the interface of electrode-p-layer, and n-p-layer and monitor the following efficiency changes. Specifically, surface molecules adsorbed on the NQDs were critical to enhance the carrier transfer among the n-layer where we could verify by measuring the photo-response from the NQD layers only. Further modifying the annealing temperature after the deposition of NQDs on p-layers allowed higher conversion efficiencies in the device.

  • PDF

Unusual ALD Behaviors in Functional Oxide Films for Semiconductor Memories

  • Hwang, Cheol Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.77.1-77.1
    • /
    • 2013
  • Atomic layer deposition (ALD) is known for its self-limiting reaction, which offers atomic-level controllability of the growth of thin films for a wide range of applications. The self-limiting mechanism leads to very useful properties, such as excellent uniformity over a large area and superior conformality on complex structures. These unique features of ALD provide promising opportunities for future electronics. Although the ALD of Al2O3 film (using trimethyl-aluminum and water as a metal precursor and oxygen source, respectively) can be regarded as a representative example of an ideal ALD based on the completely self-limiting reaction, there are many cases deviating from the ideal ALD reaction in recently developed ALD processes. The nonconventional aspects of the ALD reactions may strongly influence the various properties of the functional materials grown by ALD, and the lack of comprehension of these aspects has made ALD difficult to control. In this respect, several dominant factors that complicate ALD reactions, including the types of metal precursors, non-metal precursors (oxygen sources or reducing agents), and substrates, will be discussed in this presentation. Several functional materials for future electronics, such as higher-k dielectrics (TiO2, SrTiO3) for DRAM application, and resistive switching materials (NiO) for RRAM application, will be addressed in this talk. Unwanted supply of oxygen atoms from the substrate or other component oxide to the incoming precursors during the precursor pulse step, and outward diffusion of substrate atoms to the growing film surface even during the steady-state growth influenced the growth, crystal structure, and properties of the various films.

  • PDF