• Title/Summary/Keyword: surface sliding

Search Result 1,096, Processing Time 0.035 seconds

Temperature control for a hot water heating circulating pump system using a nonlinear sliding surface (비선형 슬라이딩 면을 이용한 온수난방 순환펌프 시스템의 온도 제어)

  • Ahn, Byung-Cheon;Cang, Hyo-Whan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.162-168
    • /
    • 1997
  • Digital variable structure controller(DVSC) is implemented to control the temperature for the hot water heating circulating pump control system. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of steady state error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The DVSC of the suggested algorithm yields improved control performance compared with the one of existing algorithm. The system responses with the suggested DVSC shows good responses without overshoot and steady state error inspite of heating load change. By decreasing sampling time, dead time and rise time are increasing, and system output noise by flow dynamics is amplified.

  • PDF

A New Sliding-Surface-Based Tracking Control of Nonholonomic Mobile Robots (새로운 슬라이딩 표면에 기반한 비홀로노믹 이동 로봇의 추종 제어)

  • Park, Bong-Seok;Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.842-847
    • /
    • 2008
  • This paper proposes a new sliding-surface-based tracking control system for nonholonomic mobile robots with disturbance. To design a robust controller, we consider the kinematic model and the dynamic model of mobile robots with disturbance. We also propose a new sliding surface to solve the problem of previous study. That is, since the new sliding surface is composed of differentiable functions unlike the previous study, we can obtain the control law for arbitrary trajectories without any constraints. From the Lyapunov stability theory, we prove that the position tracking errors and the heading direction error converge to zero. Finally, we perform the computer simulations to demonstrate the performance of the proposed control system.

Discrete-Time Sliding Mode Control for Linear Systems with Matching Uncertainties

  • Myoen, Kohei;Hikita, Hiromitsu;Hanajima, Naohiko;Yamashita, Mitsuhisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.151.5-151
    • /
    • 2001
  • Sliding mode control is investigated for a discrete-time system with uncertainties. The narrowest neighborhood of the sliding surface is shown in which the state can remain. The range is determined by the upper bound of the absolute value of the uncertainty and the equation of the sliding surface. A sliding mode control algorithm is proposed to keep the state there without requiring an enormous input. Under the presence of the system parameter variations, the origin is not always stable although the sliding surface represents the stable dynamics and the state is kept in this neighborhood. The condition for the origin to be stable is investigated. Furthermore, the problems occurring when a continuous-time sliding mode control being ...

  • PDF

Double Sliding Surfaces based on a Sliding Mode Control for a Tracking Control of Mobile Robots (이동 로봇의 추종 제어를 위한 이중 슬라이딩 표면에 기반한 슬라이딩 모드 제어)

  • Lee, Jun Ku;Choi, Yoon Ho;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.495-500
    • /
    • 2013
  • This paper proposes a double sliding surfaces based on a sliding mode control for a tracking control of nonholonomic mobile robots in the Cartesian coordinates. In order to remove sliding surface constraints, we design the additional sliding surface for the heading angle with respect to the newly defined coordinates. Then, we define the switching law based on the posture error to combine the designed sliding surface with the previous one. By using the double sliding surfaces and the switching law, we obtain the control law for arbitrary trajectories. It is proved that the position tracking error and the heading direction error asymptotically converge to zero, respectively, with the Lyapunov stability theory. Finally, through computer simulations, we demonstrate the effectiveness of the proposed control system.

Friction Behavior of Micro-scale Groove Surface Patterns Under Lubricated Sliding Contact

  • Chae Young-Hun
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.51-57
    • /
    • 2005
  • Surface texturing of tribological applications is an attractive technology of engineered surface. Therefore, reduction of friction is considered to be necessary for improved efficiency of machines. The current study investigated the potential of textured micro-scale grooves on bearing steel flat mated with pin-on-disk. We discuss reducing friction due to the influence of sliding direction at surface pattern. We can indicate lubrication mechanism as a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter for the lubrication condition. It was found that the friction coefficient was changed by the surface pattern and sliding direction, even when surface pattern was the same. It was thus verified that micro-scale grooves could affect the friction reduction considerably under mixed and hydrodynamic lubrication conditions. The lubrication regime influences the friction coefficient induced by the sliding direction of groove pattern. The friction coefficient depends on a combination of resistance force and hydrodynamic.

Stress Intensity Factors and Possible Crack Propagation Mechanisms for a Crack Surface in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰 접촉하중시 Polyethylene Tibia 표면균열의 응력확대계 수와 복합전파거동에 관한 연구)

  • Kim, Byung-Soo;Moon, Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2019-2027
    • /
    • 2003
  • Pitting wear is a dominant from of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, K$\_$I/and $_{4}$, were calculated for a surface crack in a polyethylene-CoCr-bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive K$\_$I/ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $_{4}$ was the greatest when the load was directly adjacent to the crack (g/a=${\pm}$1). Sliding friction caused a substantial increase of both K$\_$I/$\^$max/ and $_{4}$$\^$max/. The effective Mode I stress intensity factors, K$\_$eff/, were the greatest at g/a=${\pm}$1, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of K$\_$eff/ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

Study for Possible Crack Propagation Mechanisms for a Surface Cracked in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰접촉하중 시 Polyethylene tibia 요소의 표면균열 복합전파 거동에 관한 연구)

  • Kim, B.S.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1222-1227
    • /
    • 2003
  • Pitting wear is a dominant form of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, $K_{I}$ and $K_{II}$, were calculated for a surface crack in a polyethylene - CoCr - bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive $K_{I}$ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $K_{II}$, was the greatest when the load was directly adjacent to the crack $(g/a={\pm}1)$. Sliding friction caused a substantial increase of both $K_{I}^{max}$ and $K_{II}^{max}$. The effective Mode I stress intensity factors, $K_{eff}$, were the greatest at $g/a={\pm}1$, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of $K_{eff}$ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

  • PDF

Wear Transition during Sliding in Glass (유리에서 미끄럼시의 마모천이)

  • 조성재;방건웅;김종집;문한규
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.83-86
    • /
    • 1989
  • A wear transition mechanism during sliding in glass has been observed. Disk specimens of sodalime-silicate glass were slid against AISI 52100 steel with paraffin oil as lubricant. Observations of the micrrx structural change on the worn surface showed that semi-circular cone cracks (SCCCs) were suddenly produced after a certain critical sliding time. These SCCCs brought about the severe damage in the form of extensive microchipping during further sliding. It was shown that the abrupt appearance of the SCCCs is attributable to the grooves formed during sliding, which act as surface flaws.

A Study on the BLDC Motor Contro with Noble SMC (새로운 SMC를 이용한 BLDC 전동기 제어에 관한 연구)

  • 박승규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.216-220
    • /
    • 1999
  • In this paper, the feedback linearization technique is used with the sliding mode control for nonlinear system. The combination of these two control techniques can be achieved by proposing a novel sliding surface which has the nonminal dynamics of the original system controlled by feedback linearization technique. The noble design of the sliding surface is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching phase is removed by using an initial virtual state which makes the initial sliding function equal to zero

  • PDF

Robust Sliding Mode Control for Mismatched Uncertainties (비정합 불확실 시스템을 위한 견실한 슬라이딩 모드 제어)

  • 두상호;김가규;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.345-345
    • /
    • 2000
  • This paper introduces a new design approach for robust sliding-mode control of a class of mismatched uncertainties. For this, we propose a design method of sliding-mode surface using eigenstructure assignment to be insensitive to perturbation in sliding-mode systems, and also find a formula which is shown bounds of mismatched uncertainties for stability of the system. Simulation results are given to illustrate the approach proposed in this paper.

  • PDF