DOI QR코드

DOI QR Code

A New Sliding-Surface-Based Tracking Control of Nonholonomic Mobile Robots

새로운 슬라이딩 표면에 기반한 비홀로노믹 이동 로봇의 추종 제어

  • 박봉석 (연세대학교 전기전자공학과) ;
  • 유성진 (연세대학교 전기전자공학과) ;
  • 최윤호 (경기대학교 전자공학과) ;
  • 박진배 (연세대학교 전기전자공학과)
  • Published : 2008.08.01

Abstract

This paper proposes a new sliding-surface-based tracking control system for nonholonomic mobile robots with disturbance. To design a robust controller, we consider the kinematic model and the dynamic model of mobile robots with disturbance. We also propose a new sliding surface to solve the problem of previous study. That is, since the new sliding surface is composed of differentiable functions unlike the previous study, we can obtain the control law for arbitrary trajectories without any constraints. From the Lyapunov stability theory, we prove that the position tracking errors and the heading direction error converge to zero. Finally, we perform the computer simulations to demonstrate the performance of the proposed control system.

Keywords

References

  1. R. W. Brockett, 'Asymptotic stability and feedback stabilization,' in Differential Geometric Control Theory, Eds. Boston, MA: Birkhauser, pp. 181-191, 1983
  2. Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, 'A stable tracking control method for a nonholonomic mobile robot,' in Proc. IEEE Int. Conf. Robot and Automation, pp. 384- 389, 1990
  3. C. Samson and K. Ait-Abderrahim, 'Feedback control of a nonholonomic wheeled cart in cartesian space,' in Proc. IEEE Int. Conf. Robot and Automation, pp. 1136-1141, 1991
  4. T. Fukao, H. Nakagawa, and N. Adachi, 'Adaptive tracking control of a nonholonomic mobile robot,' IEEE Trans. Robotics and Automation, vol. 16, no. 5, pp. 609-615, Oct. 2000 https://doi.org/10.1109/70.880812
  5. R. Fierro and F. L. Lewis, 'Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics,' Journal of Robotic Systems, vol. 14, no. 3, pp. 149-163, 1997 https://doi.org/10.1002/(SICI)1097-4563(199703)14:3<149::AID-ROB1>3.0.CO;2-R
  6. W. E. Dixon, M. S. de Queiroz, D. M. Dawson, and T. J. Flynn, 'Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity,' IEEE Trans. Control System Technology, vol. 12, no. 1, pp. 138-147, July 2004 https://doi.org/10.1109/TCST.2003.819587
  7. M. S. Kim, J. H. Shin, S. G. Hong, and J. J. Lee, 'Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainties and disturbances,' Mechatronics, vol. 13, no. 5, pp. 507-519, 2003 https://doi.org/10.1016/S0957-4158(02)00002-8
  8. W. Dong and K. D. Kuhnert, 'Robust adaptive control of nonholonomic mobile robot with parameter and nonparameter uncertainties,' IEEE Trans. Robot. Automat., vol. 21, no. 2, pp. 261-266, 2005 https://doi.org/10.1109/TRO.2004.837236
  9. T. Das and I. N. Kar, 'Design and implementation of an adaptive fuzzy logic based controller of wheeled mobile robots,' IEEE Trans. Control System Technology, vol. 14, no. 3, pp. 501-510, 2006 https://doi.org/10.1109/TCST.2006.872536
  10. R. Fierro and F. L. Lewis, 'Control of a nonholonomic mobile robot using neural networks,' IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 589-600, 1998 https://doi.org/10.1109/72.701173
  11. J. M. Yang and J. H. Kim, 'Sliding mode control of trajectory tracking of nonholonomic wheeled mobile robots,' IEEE Trans. Robot. Automat., vol. 15, no. 3, pp. 578-587, 1999 https://doi.org/10.1109/70.768190
  12. D. Chwa, 'Sliding-mode control of nonholonomic wheeled mobile robots in polar coordinates,' IEEE Trans. Control System Technology, vol. 12, no. 4, pp. 637-644, July 2004 https://doi.org/10.1109/TCST.2004.824953

Cited by

  1. Double Sliding Surfaces based on a Sliding Mode Control for a Tracking Control of Mobile Robots vol.19, pp.6, 2013, https://doi.org/10.5302/J.ICROS.2013.13.1872
  2. Sliding mode tracking control of mobile robots with approach angle in cartesian coordinates vol.13, pp.3, 2015, https://doi.org/10.1007/s12555-014-0024-5