• Title/Summary/Keyword: surface reflection model

Search Result 171, Processing Time 0.021 seconds

High Frequency Acoustic Scattering Analysis of Underwater Target (수중표적에 대한 고주파수 음향산란 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jong-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.528-533
    • /
    • 2005
  • A mono-static high frequency acoustic target strength analysis scheme was developed for underwater targets, based on the far-field Kirchhoff approximation. Au adaptive triangular beam method and a concept of virtual surface were adopted for considering the effect of hidden surfaces and multiple reflections of an underwater target, respectively. A test of a simple target showed that the suggested hidden surface removal scheme is valid. Then some numerical analyses, for several underwater targets, were carried out; (1) for several simple underwater targets, like sphere, square plate, cylinder, trihedral corner reflector, and (2) for a generic submarine model, The former was exactly coincident with the theoretical results including beam patterns versus azimuth angles, and the latter suggested that multiple reflections have to be considered to estimate more accurate target strength of underwater targets.

Hybrid finite element model for wave transformation analysis (파랑 변형 해석을 위한 복합 유한요소 모형)

  • Jung Tae Hwa;Park Woo Sun;Suh Kyung Duck
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

Numerical Simulation of Transport Phenomena for Laser Full Penetration Welding

  • Zhao, Hongbo;Qi, Huan
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.13-22
    • /
    • 2017
  • In laser full penetration welding process, full penetration hole(FPH) is formed as a result of force balance between the vapor pressure and the surface tension of the surrounding molten metal. In this work, a three-dimensional numerical model based on a conserved-mass level-set method is developed to simulate the transport phenomena during laser full penetration welding process, including full penetration keyhole dynamics. Ray trancing model is applied to simulate multi-reflection phenomena in the keyhole wall. The ghost fluid method and continuum method are used to deal with liquid/vapor interface and solid/liquid interface. The effects of processing parameters including laser power and scanning speed on the resultant full penetration hole diameter, laser energy distribution and energy absorption efficiency are studied. The model is validated against experimental results. The diameter of full penetration hole calculated by the simulation model agrees well with the coaxial images captured during laser welding of thin stainless steel plates. Numerical simulation results show that increase of laser power and decrease of welding speed can enlarge the full penetration hole, which decreases laser energy efficiency.

Experimental Study of Wave-Absorbing Performance by Horizontal Punching Plates (수평형 타공판에 의한 소파성능의 실험적 연구)

  • Jung H. J.;Cho I. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.40-48
    • /
    • 1999
  • Wave absorbing system is needed at various kinds of wave basins (wave flume, towing tank, square tank) for the model test related to the ocean engineering. In this paper, the performance of wave absorbing system with new concept is estimated throughout the experiments. Herein, the wave absorbing system is designed by punching plate with a given porosity which is installed horizontally and submerged near the water surface. As the incident wave generated by a wave maker advances above a punching plate, the strong jet flow is formed near a hole of punching plate. As a result, wave energy is dissipated into heat energy, Systematic model tests were conducted at KRISO to verify the performance of the wave absorber using a punching plate. It was found that the reflection coefficient of wave absorber is deeply dependent on both the porosity and the submerged depth of a punching plate. Inclined installation of a punching plate shows better performance than a horizontal one within a certain inclined angle.

  • PDF

Removal of Seabed Multiples in Seismic Reflection Data using Machine Learning (머신러닝을 이용한 탄성파 반사법 자료의 해저면 겹반사 제거)

  • Nam, Ho-Soo;Lim, Bo-Sung;Kweon, Il-Ryong;Kim, Ji-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.168-177
    • /
    • 2020
  • Seabed multiple reflections (seabed multiples) are the main cause of misinterpretations of primary reflections in both shot gathers and stack sections. Accordingly, seabed multiples need to be suppressed throughout data processing. Conventional model-driven methods, such as prediction-error deconvolution, Radon filtering, and data-driven methods, such as the surface-related multiple elimination technique, have been used to attenuate multiple reflections. However, the vast majority of processing workflows require time-consuming steps when testing and selecting the processing parameters in addition to computational power and skilled data-processing techniques. To attenuate seabed multiples in seismic reflection data, input gathers with seabed multiples and label gathers without seabed multiples were generated via numerical modeling using the Marmousi2 velocity structure. The training data consisted of normal-moveout-corrected common midpoint gathers fed into a U-Net neural network. The well-trained model was found to effectively attenuate the seabed multiples according to the image similarity between the prediction result and the target data, and demonstrated good applicability to field data.

3DOF Force-Reflection Interface (3자유도 힘 반향 역감장치)

  • 강원찬;김동옥;신석두;김영동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.455-461
    • /
    • 1999
  • In this paper, we present the 3DOF force-rei1ecting interface which allows to acquire force of objc'Ct within a a virtual environment. This system is comlxlsed of device, virtual environment model, and force-rei1ecting r rendering algorithm. We design a J DOF force reflecting device using the pc$\alpha$allel linkage, torque shared by W wire, and the controller of system applied by impedance control algorithm. The force reflecting behaviour i implemented as a function position is equivalent to controlling the mechanical impedance felt by the user. E Especially how force should be supplied to user, we know using a God-Object algorithm As we experiment a system implement$\varepsilon$d by the interface of 3D virtual object and 3DOF force reJll'Cting i interface, we can feel a contact, non contact of :)D virtual object surface and sensin앙 of push button model.utton model.

  • PDF

Optical Cap Sensor for Magneto-Optic Near-Field Recording (MO 근접장 기록을 위한 광학 갭 센서)

  • Yoon, Yong-Joong;Park, Jae-Hyuk;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.245-250
    • /
    • 2004
  • This paper proposes a new method of measuring an air interface distance between a solid immersion lens(SIL) applied magneto-optic technology and the disk surface. For applying near-field recording (NFR) technology to the magneto-optic storage devices for the next generation, it is positively necessary to maintain the small air gap under about 100㎚. We design an apparatus that consists of some optical components such as a prism, a polarizer and an analyzer. By using the Fresnel reflection coefficient equation, Jones matrices calculation and Malus's law, we establish a mathematical model for understanding the characteristics of the system. The simulations are based on the mathematical model and through the simulation results which is made with various cases we can estimate the performance of the new optical gap sensor system. Experimental results, which are also based on the mathematical model for specific cases, are in good agreement with simulated ones and demonstrate the possibility as the new optical gap sensor.

Development of Prediction Model for Sugar Content of Strawberry Using NIR Spectroscopy (근적외선 분광을 이용한 딸기의 당도예측모델 개발)

  • Son, Jaeryong;Lee, Kangjin;Kang, Sukwon;Yang, Gilmo;Seo, Youngwook
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.297-301
    • /
    • 2009
  • This study was performed to develop a prediction model of sugar content for strawberry. Near-infrared (NIR) spectroscopy has been prevailed for on-line and portable applications for non-invasive quality assessment of intact fruit. This work presents effects of illumination method and coating of reflection surface of light source on prediction result of sugar content. Effect of preprocessing methods was also examined. A low-cost commercially available VIS/NIR spectrometer was used for estimation of total soluble solids content (Brix). To predict sugar contents of strawberry, the best results were obtained with the spectrum data measured under intensive illuminations at three locations induced from the light source with fiber optic bundles. Gold coating of reflection surface of light source lamp gave favorable effect to prediction result. The best results in validation of PLSR model were $r_{SEP}$ = 0.891 and SEP = 0.443 Brix under OSC preprocessing and those of PCR were $r_{SEP}$ = 0.845, SEP $r_{SEP}$= 0.520 Brix, under no preprocessing.

Prediction of moisture contents in green peppers using hyperspectral imaging based on a polarized lighting system

  • Faqeerzada, Mohammad Akbar;Rahman, Anisur;Kim, Geonwoo;Park, Eunsoo;Joshi, Rahul;Lohumi, Santosh;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.995-1010
    • /
    • 2020
  • In this study, a multivariate analysis model of partial least square regression (PLSR) was developed to predict the moisture content of green peppers using hyperspectral imaging (HSI). In HSI, illumination is essential for high-quality image acquisition and directly affects the analytical performance of the visible near-infrared hyperspectral imaging (VIS/NIR-HSI) system. When green pepper images were acquired using a direct lighting system, the specular reflection from the surface of the objects and their intensities fluctuated with time. The images include artifacts on the surface of the materials, thereby increasing the variability of data and affecting the obtained accuracy by generating false-positive results. Therefore, images without glare on the surface of the green peppers were created using a polarization filter at the front of the camera lens and by exposing the polarizer sheet at the front of the lighting systems simultaneously. The results obtained from the PLSR analysis yielded a high determination coefficient of 0.89 value. The regression coefficients yielded by the best PLSR model were further developed for moisture content mapping in green peppers based on the selected wavelengths. Accordingly, the polarization filter helped achieve an uniform illumination and the removal of gloss and artifact glare from the green pepper images. These results demonstrate that the HSI technique with a polarized lighting system combined with chemometrics can be effectively used for high-throughput prediction of moisture content and image-based visualization.

Evaluation of Interlayer Shear Properties and Bonding Strengths of a Stress-Absorbing Membrane Interlayer and Development of a Predictive Model for Fracture Energy (덧씌우기 응력흡수층에 대한 전단, 부착강도 평가 및 파괴에너지 예측모델 개발)

  • Kim, Dowan;Mun, Sungho;Kwon, Ohsun;Moon, Kihoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • PURPOSES : A geo-grid pavement, e.g., a stress-absorbing membrane interlayer (SAMI), can be applied to an asphalt-overlay method on the existing surface-pavement layer for pavement maintenance related to reflection cracking. Reflection cracking can occur when a crack in the existing surface layer influences the overlay pavement. It can reduce the pavement life cycle and adversely affect traffic safety. Moreover, a failed overlay can reduce the economic value. In this regard, the objective of this study is to evaluate the bonding properties between the rigid pavement and a SAMI by using the direct shear test and the pull-off test. The predicted fractural energy functions with the shear stress were determined from a numerical analysis of the moving average method and the polynomial regression method. METHODS : In this research, the shear and pull-off tests were performed to evaluate the properties of mixtures constructed using no interlayer, a tack-coat, and SAMI with fabric and without fabric. The lower mixture parts (describing the existing pavement) were mixed using the 25-40-8 joint cement-concrete standard. The overlay layer was constructed especially using polymer-modified stone mastic asphalt (SMA) pavement. It was composed of an SMA aggregate gradation and applied as the modified agent. The sixth polynomial regression equation and the general moving average method were utilized to estimate the interlayer shear strength. These numerical analysis methods were also used to determine the predictive models for estimating the fracture energy. RESULTS : From the direct shear test and the pull-off test results, the mixture bonded using the tack-coat (applied as the interlayer between the overlay layer and the jointed cement concrete) had the strongest shear resistance and bonding strength. In contrast, the SAMI pavement without fiber has a strong need for fractural energy at failure. CONCLUSIONS : The effects of site-reflection cracking can be determined using the same tests on cored specimens. Further, an empirical-mechanical finite-element method (FEM) must be done to understand the appropriate SAMI application. In this regard, the FEM application analy pavement-design analysis using thesis and bonding property tests using cored specimens from public roads will be conducted in further research.