• Title/Summary/Keyword: surface ozone

Search Result 369, Processing Time 0.028 seconds

Analysis of Photochemical Ozone Formation Regime in Busan - Comparative Study on Busan vs. Seoul Metropolitan Area(Ⅳ) (부산지역 광화학 오존 생성 regime 분석 - 수도권과 비교연구 (Ⅳ))

  • Seung-Hee Baek;Hyo-Jung Lee;Cheol-Hee Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.5
    • /
    • pp.285-301
    • /
    • 2023
  • This study analyzed characteristics of ozone (O3) formation regimes in Busan over a period of recent five years (2015~2019) and compared the findings with those obtained in Seoul. We employed four observed variations: early morning commuting-hour (i.e., 06:00-09:00 LST) nitrogen dioxide (NO2), peak-hour (i.e., 12:00-16:00 LST) O3, 8-hour average O3 (MDA8 O3), and △O3 (=O3_max- O3_min) in Busan and Seoul. In addition, the NO2-O3 relation was assessed to interpret which of NOx-limited or volatile organic compound (VOC)-limited was dominant. In Busan, the annual mean O3 concentration was relatively higher than in Seoul, whereas there were fewer high-concentration days. The Pearson correlation coefficients (R) between Early morning-hour NO2 and the Peak-hour O3 was positive (but close to zero) in Busan and negative in Seoul. Likewise, the R between the Early morning-hour NO2 and the △O3 showed a relatively considerable positive correlation (R=+0.4~0.5)(R=+0.4~0.5) in Busan, while a weak positive correlation (R=+0.1~0.2) in Seoul. From this result, it can be inferred that the O3 formation regime in Busan was intrepreted to be nearly neutral or relatively closer to the NOx-limited regime than Seoul, while Seoul to the VOC-limited regime. The study findings imply that O3 control strategies should be applied differently in Busan and Seoul. The results here were inferred from surface NO2 and O3 observations, and the varification studies based on in-situ VOCs measurements would be needed.

Factors Affecting Chemical Disinfection of Drinking Water

  • Lee, Yoon-jin;Nam, Sang-ho;Jun, Byong-ho;Oh, Kyoung-doo;Kim, Suk-bong;Ryu, Jae-keun;Dionysiou, Dionysios D.;Itoh, Sadahiko
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.126-131
    • /
    • 2004
  • This research sought to compare chlorine, chlorine dioxide and ozone as chemical disinfectants of drinking water, with inactivation of total coliform as the indicator. The inactivation of total coliform was tested against several variables, including the dose of disinfectant, contact time, pH, temperature and DOC. A series of batch processes were performed on water samples taken from the outlet of a settling basin in a conventional surface water treatment system that is provided with the raw water drawn from the mid-stream of the Han River. Injection of 1 mg/L of chlorine, chlorine dioxide and ozone resulted in nearly 2.4, 3.0 and 3.9 log inactivation, respectively, of total coliform at 5 min. To achieve 99.9 % the inactivation, the disinfectants were required in concentrations of 1.70, 1.00 and 0.60 mg/L for chlorine, chlorine dioxide and ozone, respectively. Bactericidal effects generally decreased as pH increased in the range of pH 6 to 9. The influence of pH change on the killing effect of chlorine dioxide was not strong, but that on ozone and free chlorine was sensitive. The activation energies of chlorine, chlorine dioxide and ozone were 36,053, 29,822 and 24,906 J/mol for coliforms with inactivation effects being shown in the lowest orders of these.

Characteristic of wastewater treatment using Boron-doped Diamond Electrode (붕소가 도핑된 다이아몬드전극을 이용한 폐수처리특성)

  • Lee, Eun-Ju;Einaga, Y.;Fujishima, A.;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.795-798
    • /
    • 2003
  • Toxic organics are of great environmental concern primarily because they are toxic to mammals and birds, and are relatively soluble in water to contaminate surface water and groundwater. In this study, the decomposition of phenol, a widely used organic, in aqueous solutions by Boron doped diamond(BDD) electrode was examined. Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped diamond (BDD) were used as anode for generating ozone gas by electrolysis of acid solution. In this work. we have studied ozone generating system using BDD electrode. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable for electrolyte while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte. Decomposition of phenol concentration in the reaction solution by photolytic ozonation( $UV/O_3$) was analyzed by HPLC epuipped with a UV detector.

  • PDF

Comparing the Passivation Quality of Ozone and H2O Oxidant of Atomic Layer Deposited Al2O3 by Post-annealing in N2 and Forming Gas Ambients for Passivated Emitter and Rear Cell (PERC)

  • Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.462-462
    • /
    • 2014
  • The effect of rear passivation for passivated emitter and rear cell (PERC) using ozone and H2O oxidant of atomic layer deposited (ALD) Al2O3 was studied by post-annealing in N2 and forming gas ambients. Rear surface of PERC solar cell was passivated by Al2O3 grown by ALD with ozone and H2O oxidant. Al2O3 grown by ALD with ozone oxidant has been known to have many advantages, such as lower interface defects, low leakage current density. Its passivation quality is better than Al2O3 with H2O. Al2O3 layer with 10 nm and 20 nm thickness was grown at $150^{\circ}C$ with ozone oxidant and at $250^{\circ}C$ with H2O oxidant. And then each samples were post-annealled at $450^{\circ}C$ in N2 ambients and at $850^{\circ}C$ in forming gas ambients. The passivation quality was investigated by measuring the minority carrier lifetime respectively. We examined atomic layer deposited Al2O3 such as growth rate, film density, thickness, negative fixed charge density at AlOx/Si interface, and reflectance. The influences of process temperature and heat treatment were investigated using Sinton (WCT-120) by Quasi-Steady State Photoconductance (QSSPC) mode. Ozone-based ALD Al2O3 film shows the best carrier lifetime at lower deposition temperature than H2O-based ALD.

  • PDF

Cure Characteristics, Physical Properties and Ozone Resistance of Butyl Rubber and EPDM Rubber Blends (Butyl고무와 EPDM고무 블렌드의 경화특성, 물리적 성질 및 내오존성)

  • Park, Chan-Young;Hwang, Young-Bea
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.329-334
    • /
    • 2011
  • In general, butyl rubber(IIR : isobutylene isoprene rubber) has excellent gas permeability resistance and impact absorbance property as low resilience elastomer. In this experiment butyl rubber blends with EPDM(ethylene propylene diene monomer) were prepared by mechanical mixing method. Curing behavior, physical properties and ozone resistance etc. were subsequently examined. Measurement results of gas transmission rate test shows that butyl rubber contents above 50 wt% showed significant decrease in gas permeability resistant property. However, in butyl rubber/EPDM blend, EPDM contents above 25 wt% indicates no surface change due to improvement of ozone resistance under the condition of 50 pphm, $50^{\circ}C$, 120 hrs.

The Changes of UV-B Radiation at the Surface due to Stratospheric Aerosols (성층권 에어로졸에 의한 지표면 UV-B 복사량 변동)

  • Jai-Ho Oh;Joon-Hee Jung;Jeong-Woo Kim
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.21 no.1
    • /
    • pp.31-46
    • /
    • 1993
  • A radiative transfer model with two-stream/delta-Eddington approximation has been developed to calculate the vertical distributions of atmospheric heating rates and radiative fluxes. The performance of the model has been evaluated by comparison with the results of ICRCCM (Intercomparison of radiative codes in climate models). It has been demonstrated that the presented model has a capability to calculate the solar radiation not only accurately but also economically. The characteristics of ultraviolet-B radiation (UV-B; 280-320nm) are examined by comparison of relation between the flux at the top of atmosphere and that at the surface. The relation of UV-B is quadratic due to the strong ozone absorption in this band. Also, the dependence of the UV-B radiation on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption on the stratospheric ozone depletion and stratospheric aerosol haze due to volcanic eruption has been tested with various solar zenith angles. The surface UV-B increases as the solar zenith angle increases. The existence of stratospheric aerosols causes an increase in the planetary albedo due to the aerosols' backscattering. The planetary albedo with aerosol's effect has been increases as the solar zenith angle is not sensitive. It may be caused by the fact that the aerosols' scattering effect becomes saturated with the relatively long path length in a large solar zenith angle. Finally, the regional impact of stratospheric aerosols due to volcanic eruption on the intensity of UV-B radiation at the surface has been estimated. A direct effect is that the flux is diminished at the low latitudes, while it is enhanced in the high latitudes by the aerosols' photon trap or twilight effect. In the high latitudes, both aerosols' scattering and ozone absorption have strong and opposite impacts to the surface UV-B radiation is located at the mid-latitudes during spring season in both hemispheres.

  • PDF

Photooxidation of Poly(vinyl butyral) Films by UV/Ozone Irradiation (자외선/오존 조사에 의한 Poly(vinyl butyral)의 광산화)

  • Joo, Jin-Woo;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.27 no.2
    • /
    • pp.113-118
    • /
    • 2015
  • Poly(vinyl butyral), PVB was photooxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PVB film were investigated by the measurement of reflectance, surface roughness, contact angles, elemental composition, and zeta potential. With increasing UV energy, reflectance decreased in the visible and ultraviolet regions particularly at the wavelength of 400nm. The irradiation produced nano-scale surface roughness including the maximum peak-to-valley roughness increased from 274nm for the unirradiated PVB to 370nm at the UV energy of $5.3J/cm^2$. The improved hydrophilicity was due to the higher $O_{1s}/C_{1s}$ resulting from the introduction of polar groups such as C=O bonds. The surface energy of the PVB film increased from $35.3mJ/m^2$ to $39.3mJ/m^2$ at the irradiation of $15.9J/cm^2$. While the zeta potentials decreased proportionally with increasing UV energy, the cationic dyeability of the PVB increased accordingly resulting from the improved affinity of the irradiated PVB surfaces containing the photochemically introduced anionic and dipolar dyeing sites.

Effect of Dissolved and Colloidal Contaminants of Newsprint Machine White Water on Water Surface Tension and Paper Physical Properties

  • Consultant, Seika-Tay
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.61-69
    • /
    • 1999
  • Contaminants such as fatty acids, triglycerides, resin acids and foam collected from a high yield sulfite weak liquor storage tank lowered the water surface tension and reduced inter-fibre bonding but also tended to benefit sheet opacity. Some common wet end additives such as defoamers and dispersants gave similar results. Lignosulfonate and naphthalene sulfonate showed little if any negative effect on both surface tension and sheet strength properties. Among the natural wood extractives. fatty acids were identified to be most detrimental followed by triglycerides and then resin acids. In order to alleviate the detrimental impact of these contaminants, membrane separation, air floatation and ozone treatment were carried out on paper machine white water samples. The effect of these treatments on removal of fatty and resin acids was quantified by a GC-Mass analysis. Reverse osmosis with a 1000 molecular weight cut off membrane failed to totally reject fatty and resin acids, but markedly reduced losses of sheet properties due to contaminants. Ozone treatment resulted in a significant increase of the surface tension and air floatation was considered to be a practical and useful method for removing fatty and resin acids from the machine white water.

Photooxidation of Poly(butylene succinate) Films by UV/Ozone Irradiation (자외선/오존 조사에 의한 Poly(butylene succinate) 필름의 광산화)

  • Joo, Jin-Woo;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.159-164
    • /
    • 2014
  • Biodegradable Poly(butylene succinate), PBS, was photooxidized by UV/ozone irradiation and the effect of UV energy on the surface properties of the UV-irradiated PBS film were investigated by the measurement of reflectance, surface roughness, contact angles, chemical composition, and zeta potential. With increasing UV energy, reflectance decreased in the visible and ultraviolet regions particularly at the wavelength of 380nm. The irradiation produced nano-scale surface roughness including the maximum peak-to-valley roughness increased from 106nm for the unirradiated sample to 221nm at the UV energy of $10.6J/cm^2$. The improved hydrophilicity was due to the higher $O_{1s}/C_{1s}$ resulting from the introduction of polar groups such as C-O and C=O bonds. The surface energy of the PBS increased from $42.1mJ/m^2$ for the unirradiated PBS to $56.8mJ/m^2$ at the irradiation of $21.2J/cm^2$. The zeta potentials of the UV-irradiated PBS also decreased proportionally with increasing UV energy. The cationic dyeability of the PBS increased accordingly resulting from the improved affinity of the irradiated PBS surfaces containing photochemically introduced anionic and dipolar dyeing sites.

Corona Discharge and Ozone Generation Characteristics of a Wire-to-Wire Gap with a Ferroelectric Pellet Bed (강유전체 충진 선대선 방전갭의 코로나 방전 및 오존 발생특성)

  • Shin, Jung-Min;Bae, Chang-Hwan;Ahn, Chang-Jin;Lee, Jong-Hoon;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1873-1875
    • /
    • 2003
  • Surface corona discharge characteristics of a ac corona charged ferroelectric pellet barrier have been investigated experimentally. Electric charged stored on the surfaces of the ferroelectric pellets by a at corona discharge provide partial electric fields on the surfaces of the ferroelectric pellets, which could generate surface corona discharges on the ferroelectric pellets. This system utilizes both the surface discharges on the ferroelectric pellet barrier and the corona discharge between wire electrodes. As a result, in the case of the corona discharge with the ferroelectric pellet barrier, the mean corona current and ozone generation increase greatly, and the surface discharges on the ferroelectric pellets can be generated efficiently. It is also found that, the ferroelectric pellet barrier discharge reactor had better discharge characteristics for plasma generation than the wire-to-wire discharge reactor without pellets.

  • PDF