• Title/Summary/Keyword: surface motor

Search Result 882, Processing Time 0.024 seconds

A Study on Rotating Arc Using Hollow Shaft Motor (중공축 모터를 이용한 회전아크에 관한 연구)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.49-54
    • /
    • 2000
  • High speed rotating arc process, forming a flat bead surface with shallow penetration depth, can be applied to the automatic seam tracking, because the amplitude of current waveform increases at high rotation speed. Two high speed arc rotation mechanisms have been developed in Japan and Germany b rotating the electrode nozzle using an external motor, which are used prevalently for narrow gap and conventional seam welding. In this study, a new rotation mechanism was developed by using a hallow shaft motor designed to be installed in the electrode nozzle. By rotating the welding arc, the amplitude of current waveform increases remarkably since the self-regulation of arc is not fully performed. Experiments show that the arc sensor with high-speed rotation arc has improved its responsiveness and sensitivity.

  • PDF

Analysis of Linear-type Ultrasonic Motor Using A Finite Element Method (유한요소해석 프로그램에 의한 리니어 초음파 모터의 변위량 해석)

  • 이동준;임태빈;강성택;김영욱;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.33-36
    • /
    • 1998
  • This paper is a study on a linear ultrasonic motor with a first longitudinal$(L_1)$ and fourth bending $(B_4)$ double-mode rectangular plate. The stator vibrator is composed of an elastic material plate and of a piezo-ceramic element having a motion by electrical excitation. Each strain vector differs by $90^{\circ}$ generate travelling wave with the elliptical displacement motion of a point on the surface. To magnify displacement of longitudinal direction in elliptical displacement motion, the motor has a mechanism of the.displacement enlargement. In this paper, the vibration shape of the stator is simulated using the finite element method. A detailed model considered of the piezoelectric effect and of the exact geometry of the stator is used to calculate the displacement. The position of displacement mechanism is decided by the maximum displacement.

  • PDF

Characteristic Analysis of BLDC Motor considering various rotor shapes (BLDC모터의 회전자 형상변화에 의한 특성해석)

  • Han, Moon-Kyu;Hwang, Sang-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.861-863
    • /
    • 2000
  • The rotor of the BLDC motor has permanent magnets on its surface, and is alike the structure of the rotor of synchronous motors. When designing the BLDC motor which has a limited volume in a specific environment, it is important to consider the geometry of the rotor and the length of the airgap. This paper describes a design procedure by analyzing the induced voltage and cogging torque with changing the width of magnets and length of the airgap. And we made a prototype of BLDC motor with this design procedure and our experiment result shows that the cogging torque can be reduced significantly. Also we find a good agreement between the result of experiment and simulation values using Finite Element Analysis.

  • PDF

Analysis of Back EMF and Torque in Interior Permanent Magnet BLDC Motors (INTERIOR 영구자석 BLDC MOTOR의 역기전압과 토오크에 관한 분석)

  • Sung, Bu-Hyun;Ku, Ja-Nam;Kim, Chang-Jun;Lee, Jin-Won;Kim, Sung-Min;Bae, Gun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.877-879
    • /
    • 1995
  • In this study, we developed the efficient brushless DC motor for a compressor of air conditioner. The characteristics of motor are under the control of the material of some parts and the shape of magnet. Especially we compared the interior shape to the surface shape of the magnet. And we optimized the parameters like the temperature and the materials of magnet and core by tool for more efficient motor.

  • PDF

Performance Improvement of Slotless SPMSM Position Sensorless Control in Very Low-Speed Region

  • Iwata, Takurou;Morimoto, Shigeo;Inoue, Yukinori;Sanada, Masayuki
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.184-189
    • /
    • 2013
  • This paper proposes a method for improving the performance of a position sensorless control system for a slotless surface permanent magnet synchronous motor (SPMSM) in a very low-speed region. In position sensorless control based on a motor model, accurate motor parameters are required because parameter errors would affect position estimation accuracy. Therefore, online parameter identification is applied in the proposed system. The error between the reference voltage and the voltage applied to the motor is also affect position estimation accuracy and stability, thus it is compensated to ensure accuracy and stability of the sensorless control system. In this study, two voltage error compensation methods are used, and the effects of the compensation methods are discussed. The performance of the proposed sensorless control method is evaluated by experimental results.

Design and Characteristics Analysis of a Novel Single-phase Hybrid SRM for Blender Application

  • Jeong, Kwang-Il;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1996-2003
    • /
    • 2018
  • In this paper, the design and characteristic analysis of a novel single-phase hybrid switched reluctance motor (HSRM) for the purpose of replacing the universal motor in commercial blenders are presented. The proposed motor is easy to manufacture due to its simple yet robust structure with minimized power switches and no torque dead-zone. Moreover, the proposed HSRM is able to deliver a high starting torque as a requirement for blending hard food or even ice. The stator has permanent magnets (PMs) mounted on its inner surface and the rotor has a wide pole arc and salient poles that contribute to its high starting torque profile and the elimination of the torque dead-zone. Finite element method (FEM) is used to analyze the characteristic of the proposed motor. Finally, the prototype is manufactured and its performance is verified through experiments.

A Study on the Stem Coefficient of Friction of Motor- operated Gate/Globe halves

  • Jeoung, Rae-Hyuck;Park, Sung-Keun;Lee, Do-Hwan;Kim, Yang-Seok
    • Nuclear Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.133-143
    • /
    • 2003
  • Stem-stem nut coefficient of friction(COF) in motor-operated gate/globe valves is one of the important factors which determine the performance of the valve/actuators. The COF is affected greatly by the type and condition of the stem-stem nut lubricants, environmental parameters, surface condition of the stem/stem-nuts, and the number of strokes after the lubrication. In this paper, the measured data of the COFs at stem threads of some safety-related motor-operated gate/globe valves in domestic nuclear power plants are presented. In addition, the performance of the lubricants is evaluated by comparing the COFs among those valves. The results show that the measured COF at torque switch trip are higher than the unwedging COF and conservatively applicable to the unwedging COF. It is also shown that the lubricating performance based on the measured COFs varies with the lubricants.

Heat Transfer Analysis of a Linear Motor for Chip Mounter Applications (칩 마운터용 리니어 모터의 열전달 해석)

  • Jang, Chang-Soo;Kim, Jong-Young;Kim, Yung-Joon;Oh, Jung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.396-401
    • /
    • 2001
  • Heat transfer analysis of a iron core type linear motor for surface mounting device applications was considered in this study. In order to avoid the complex conjugate problem a fluid flow regime and a solid regime were considered separately. First, film coefficients of the moving parts were evaluated from computational fluid dynamic analysis and those of the stationary parts from the existing empirical or analytic correlations. And then, by applying them, internal and external temperatures of the linear motor pal1s were computed through finite element analysis. Both computation and measurement were carried out with respect to motor driving power. The measurement did not exhibit a linear temperature variation trend with respect to motor power while the computation revealed a linear correlation. Nonetheless, the computations agreed with the measurements within an error range of 20%. It indicates that an adequate heat transfer model for the reciprocative coil assembly may help more exact prediction.

  • PDF

The Effects of Two Motor Dual Task Training on Balance and Gait in Patients with Chronic Stroke (이중운동과제 훈련이 만성 뇌졸중 환자의 균형 및 보행에 미치는 효과)

  • Cho, Ki-Hun;Lee, Wan-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.4
    • /
    • pp.7-14
    • /
    • 2010
  • Purpose: The goal of this study was to investigate the effect of balance and gait ability through two motor dual task training in chronic stroke subjects. Methods: A group of twenty-five subjects who were six months post stroke participated in this study, where they were designated into pretest-posttest control The subjects were randomly allocated into two groups: experimental (n=13) and control (n=12). Both groups received physical therapy for 5 session 30 minutes per week during 6 weeks. Experimental group practiced additional two motor dual task training programs for thirty minutes a day, three days a week during six weeks. Evaluation of results was obtained through analyzing static balance, dynamic balance and gait function. Results: There was significant improvement among the group that practiced the additional two motor dual task training in that the postural sway area with open eye and close eye on the foam surface, the dynamic balance (p<0.05), and the gait function (p<0.05). Conclusion: Two motor dual task training improved static balance on the foam, dynamic balance, gait function. These results suggest that two motor dual task training is a feasible and suitable treatment for individuals with chronic stroke.

A Study on Comparison of Normal Force and Design Parameters in IPMSM(Interior Permanent Magnet Synchronous Motor) with Concentrated Winding according to Pole-Slot Combinations (극 수와 슬롯 수 조합에 따른 집중권 방식 매입형 영구자석 동기전동기의 Normal Forces 및 설계 파라미터의 비교에 관한 연구)

  • Ha, Seung-Hyonng;Kwon, Soon-O;Bahn, Ji-Hyung;Jung, Jae-Woo;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.765-766
    • /
    • 2006
  • Interior Permanent Magnet Synchronous Motor(IPMSM) have many advantages such as high power density, wide speed range and so on. With the IPMSM, miniaturization and energy efficient design can be achieved in comparison with Surface Permanent Magnet Synchronous Motor(SPMSM). In order to secure miniaturization and manufacturing efficiency of the motor, it has concentrated winding, because concentrated winding can reduce the motor volume and make manufacturing to be simple compared with the distributed winding. However, according to the pole-slot combinations motor parameters can be changed and unexpected normal force can be generated. Especially, unbalanced normal force in airgap can cause serious vibration and acoustic problem. Accordingly, in this paper, normal force and parameters variation of concentrated winding IPMSM are investigated according to the pole-slot combinations.

  • PDF