• Title/Summary/Keyword: surface modified silica

Search Result 114, Processing Time 0.021 seconds

Characterization and Formation of Chemical Bonds of Silica-Coupling Agent-Rubber (실리카-커플링제-고무의 화학 결합 형성과 특성 분석)

  • Ko, Eunah;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • Reaction between silica and silane coupling agent without solvent was investigated using transmission mode Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Bis[3-(triethoxysilylpropyl) tetrasulfide] (TESPT) was used as a silane coupling agent. After removing the unreacted TESPT, formation of chemical bonds was analyzed using FTIR and content of reacted TESPT was determined using TGA. Content of the coupling agent bonded to silica increased with increase in the coupling agent content, but the oligomers were formed by condensation reaction between coupling agents when the coupling agent was used to excess. In order to identify bonds formed among silica, coupling agent, and rubber, a silica-coupling agent-BR model composite was prepared by reaction of the modified silica with liquid BR of low molecular weight and chemical bond formation of silica-coupling agent-BR was investigated. Unreacted rubber was removed with solvent and analysis was performed using FTIR and TGA. BR was reacted with the coupling agent of the modified silica to form chemical bonds. Polarity of silica surface was strikingly reduced and particle size of silica was increased by chemical bond formation of silica-coupling agent-BR.

Selective Pattern Growth of Silica Nanoparticles by Surface Functionalization of Substrates (기판 표면 기능화에 의한 실리카 나노입자의 선택적 패턴 성장)

  • Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.20-25
    • /
    • 2020
  • As nanoscience and nanotechnology advance, techniques for selective pattern growth have attracted significant attention. Silica nanoparticles (NPs) are used as a promising nanomaterials for bio-labeling, bio-imaging, and bio-sensing. In this study, silica NPs were synthesized by a sol-gel process using a modified Stöber method. In addition, the selective pattern growth of silica NPs was achieved by the surface functionalization of the substrate using a micro-contact printing technique of a hydrophobic treatment. The particle size of the as-synthesized silica NPs and morphology of selective pattern growth of silica NPs were characterized by FE-SEM. The contact angle by surface functionalization of the substrate was investigated using a contact angle analyzer. As a result, silica NPs were not observed on the hydrophobic surface of the OTS solution treatment, which was coated by spin coating. In contrast, the silica NPs were well coated on the hydrophilic surface after the KOH solution treatment. FE-SEM confirmed the selective pattern growth of silica NPs on a hydrophilic surface, which was functionalized using the micro-contact printing technique. If the characteristics of the selective pattern growth of silica NPs can be applied to dye-doped silica NPs, they will find applications in the bio imaging, and bio sensing fields.

Fourier Transform Raman Studies of Methyl Red Adsorbed on γ-Alumina and Silica-Alumina

  • Park, Sun-Kyung;Lee, Choong-Keun;Min, Kyung-Chul;Lee, Nam-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1817-1821
    • /
    • 2004
  • Fourier transform Raman spectra of methyl red adsorbed on untreated and pretreated ${\gamma}$-alumina and silicaalumina calcined at 900 $^{\circ}C$ under 1 atm steam flowing were recorded. Spectral analysis shows that the active species adsorbed on ${\gamma}$-alumina was to be deprotonated methyl red, and on silica-alumina to be di-protonated. This indicates that ${\gamma}$-alumina adapted in this work holds Bronsted basicity, and silica-alumina Bronsted acidity. Raman intensities of methyl red on pretreated ${\gamma}$-alumina are about three times stronger than on untreated ${\gamma}$-alumina, while spectral features are unchanged. For silica-alumina, spectral features show modified vibrational characteristics upon surface hydroxylations generated from pretreatment. Consequently, the acidity loss for silica-alumina and the basicity gain for ${\gamma}$-alumina were observed by increasing the surface hydroxyl groups on the catalysts through pretreatment of the steam calcination.

Morphology and Mechanical Properties through Hydroxyapatite Powder Surface Composite (Hydroxyapatite의 파우더 표면 복합화를 통한 형태 및 기계적 성질에 관한 연구)

  • Kye, Sung Bong;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.299-306
    • /
    • 2016
  • In this study, new hydroxyapatite powder surface composites were investigated for protective effects against ultraviolet rays. Hydroxyapatite (HAp) is biocompatible and does not cause nebula phenomenon on skin. We investigated the surface modification of hydroxyapatite to improve UV block and skin usage. Dimethicone, lauroyl lysine, triethoxycaprylylsilane and silica were used as coating agents for the surface modification of HAp. To prepare the composite complex of the modified surface, the dimethicone, lauroyl lysine and triethoxycaprylylsilane were prepared by a dry process, and silica by a hydrothermal synthesis method. The HAp-silica was chosen as the best composite powder when measuring its sun protection levels. We investigated the characteristics of the surface of HAp-silica by SEM, particle size analyzer and energy dispersive spectrometry (EDS). Additionally, the stability in the formulation, UV block effect, and safety in BB creams were investigated. In conclusion, HAp-silica prepared by the modification of HAp complex surface improved the skin usage and UV block effect by enhancing the white cloudy phenomenon. These results indicate that HAp-silica may be used for UV block cosmetics.

Effects of Nano Silica and Siloxane on Properties of Epoxy Composites for Adhesion of Micro Electronic Device (나노 실리카 및 실록산이 초소형 전자소재 접착제용 에폭시 복합재의 물성에 미치는 효과)

  • Lee, Donghyun;Kim, Daeheum
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.332-336
    • /
    • 2009
  • When NCAs(non-conductive adhesives) are used for adhesion of micro-electronic devices, they often show problems such as delamination and cracking, due to the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Additions of inorganic particles or flexibilizers have been performed to solve those problems. The effects of silica addition on thermal/mechanical properties of amino modified siloxane(AMS)/silica/epoxy-nanocomposites were examined. The silica was treated by 3-glycidoxypropyltrimethoxysilane(GPTMS) for better compatibility between silica and epoxy matrix. AMS/silica/epoxy-nanocomposites filled with various amounts of AMS(1 and 3 phr) and various amounts of silica(3, 5 and 7 phr) were prepared. And Tg, moduli and CTE of nanocomposites were analyzed. Tg of AMS/Aerosil(non-modified silica)/epoxy-nanocomposites decreased from 125 to $118^{\circ}C$ with increasing Aerosil contents and moduli increased from 2,225 to 2,523 MPa with increasing Aerosil contents. Tg of AMS/M-silica (modified silica)/epoxy-nanocomposites decreased from 124 to $120^{\circ}C$ with increasing M-silica contents and moduli increased from 1,981 to 2,743 MPa with increasing M-silica contents. CTE of AMS/Aerosil/epoxy-nanocomposites and AMS/M-silica/epoxy-nanocomposites showed decreasing tendency regardless of the surface treatments.

Evaluation of BR Blending Methods for ESBR/silica Wet Masterbatch Compounds

  • Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.242-248
    • /
    • 2017
  • Wet masterbatch (WMB) technology is studied to develop high-content and highly disperse silica-filled compounds. This technology refers to the solidification of surface-modified silica with a rubber solution or latex. Until now, researchs based on styrene butadiene rubber (SBR)/silica WMB has been mainly performed. However, the blending of SBR/silica WMB and BR is not known and is currently under research and development. Therefore, in this study, the BR blending method suitable for emulsion (ESBR)/silica WMB is investigated by measuring their cure characteristics and the mechanical and dynamic viscoelastic properties. As a result, it was confirmed that the blending of ESBR/silica WMB and BR/silica dry masterbatch is most appropriate. However, it showed a disadvantage compared with the conventional mixing method, which was due to the surfactant remained and the sulfuric acid used as the coagulant.

Surface modifiers on the waterglass aerogels prepared by ambient drying process (상압건조 물유리 에어로젤에 대한 표면개질제의 영향)

  • Kim, Tae-Jung;Nahm, Sahn;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.173-178
    • /
    • 2006
  • Silica aerogel with ultra low density and high porosity has been focused on versatile application due to its fascinating properties. Ambient drying process of waterglass, in this study was researched to fabricate a crack-free monolith body in the point view of cost effective way. Wet gel was obtained by removing of $Na^{+}$ ions in waterglass, which contains 8 wt% of $SiO_{2}$. Xylene, which has a low vapor pressure, was used as a solution substitutor to prevent the formation a cracks during drying. Various surface modifiers like as hexamethyldisilazane (HMDSZ), trimethylchlorosilane (TMCS), methyltriethoxylsilane (MTES), methyltrimethoxysilane (MTMS) and phenyltriethoxysilane (PTES) were used in order to improve hydrophobicity of the waterglass Silica aerogel. Some physical properties of the surface modified aerogels were investigated by FT-IR, TGA, BET and SEM. Hydrophobicity and hydrophilicity of Silica aerogel is attributed to the Si-OH bond and the non-polar C-H bond groups on the surface of aerogel. Crack-free waterglass aerogel with >90 % of porosity, 17 nm of pore size and <0.15 $g/cm^{3}$ of density was prepared. HMDSZ and TMCS are effective as a surface modifier

The Synthesis of Hydrophobic Silica Aerogel in the Macroporous Ceramic Structure by Ambient Drying Process (상압 건조 공정을 이용한 다공성 세라믹스 구조체 내부에 소수성 실리카 에어로겔의 합성)

  • Hong, Sun-Wook;Song, In-Hyuck;Park, Young-Jo;Yun, Hui-Suk;Hahn, Yoo-Dong;Hwang, Ki-Young;Rhee, Young-Woo
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.269-276
    • /
    • 2011
  • The synthesis behavior of nanoporous silica aerogel in the macroporous ceramic structure was observed using TEOS as a source material and glycerol as a dry control chemical additive (DCCA). Silica aerogel in the macroporous ceramic structure was synthesized via sono-gel process using hexamethyldiazane (HMDS) as a modification agent and n-hexane as a main solvent. The wet gel with a modified surface was dried at $105^{\circ}C$ under ambient pressure. The addition of glycerol appears to give the wet gel a more homogeneous microstructure. However, glycerol also retarded the rate of surface modification and solvent exchange. Silica aerogel completely filled the macroporous ceramic structure without defect in the condition of surface modification (20% HMDS/nhexane at 36hr).

Carboxylated Nitrile Elastomer/Filler Nanocomposite: Effect of Silica Nanofiller in Thermal, Dynamic Mechanical Behavior, and Interfacial Adhesion

  • Mahaling R. N.;Jana G. K.;Das C. K.;Jeong, H.;Ha C. S.
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.306-313
    • /
    • 2005
  • Surface modified nanofillers are often used as curative-cum reinforcing agents for functional polymers. The polymer nanofiller interaction depends on the curative systems used. In the present study the carboxylic group of the carboxylated nitrile elastomer participated in the reaction with Zn-ion coated nanosilica filler producing a type of ionomeric elastomer. The interaction at the molecular level thus produced a high modulus vulcanizate. In this case, the S and MBT system, as curative, had an edge over the MDA and DPG curative system. Interfacial adhesion was enhanced in the presence of Zn-ion-coated nanosilica filler associated with dynamic mechanical behavior. The inferior properties obtained in the case of the MDA and DPG curative system were due to the decreased reactivity of the silica surface, thus reducing interfacial adhesion.

Titanium thin film modified silica substrate to enhance the bonding properties of nanosilver

  • Lin, H.M.;Liu, Y.T.;Lin, K.N.;Chang, W.S.;Wu, C.Y.;Liu, P.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1733-1736
    • /
    • 2006
  • Nanosilver has intrinsic problem to adhesion on the surface of silica. To improve interfacial properties between nanosilver and silica substrate, a thin titanium film is introduced in this study. The titaniumcoated silica substrates are prepared by sputter technique. The commercial silver nanopaste with size around 3-7nm is used in this study. The results indicate thin layer of titanium can improve the bonding properties of nanosilver and expect to be used in fabrication of TFT display panel.

  • PDF