DOI QR코드

DOI QR Code

The Synthesis of Hydrophobic Silica Aerogel in the Macroporous Ceramic Structure by Ambient Drying Process

상압 건조 공정을 이용한 다공성 세라믹스 구조체 내부에 소수성 실리카 에어로겔의 합성

  • Hong, Sun-Wook (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Song, In-Hyuck (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Park, Young-Jo (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Yun, Hui-Suk (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Hahn, Yoo-Dong (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Hwang, Ki-Young (Agency for Defense Development) ;
  • Rhee, Young-Woo (Graduate School of Green Energy Technology Chungnam Nation University)
  • 홍선욱 (재료연구소 엔지니어링세라믹그룹) ;
  • 송인혁 (재료연구소 엔지니어링세라믹그룹) ;
  • 박영조 (재료연구소 엔지니어링세라믹그룹) ;
  • 윤희숙 (재료연구소 엔지니어링세라믹그룹) ;
  • 한유동 (재료연구소 엔지니어링세라믹그룹) ;
  • 황기영 (국방과학연구소) ;
  • 이영우 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2011.04.14
  • Accepted : 2011.05.19
  • Published : 2011.06.28

Abstract

The synthesis behavior of nanoporous silica aerogel in the macroporous ceramic structure was observed using TEOS as a source material and glycerol as a dry control chemical additive (DCCA). Silica aerogel in the macroporous ceramic structure was synthesized via sono-gel process using hexamethyldiazane (HMDS) as a modification agent and n-hexane as a main solvent. The wet gel with a modified surface was dried at $105^{\circ}C$ under ambient pressure. The addition of glycerol appears to give the wet gel a more homogeneous microstructure. However, glycerol also retarded the rate of surface modification and solvent exchange. Silica aerogel completely filled the macroporous ceramic structure without defect in the condition of surface modification (20% HMDS/nhexane at 36hr).

Keywords

References

  1. Y. I. Lee, K. J. Lee, D. H. Jang, J. K. Yang, and Y. H. Chao: J. Korean Powder Metall. Inst., 3 (2010) 203 (Korean).
  2. S. H. Chae, Y. W. Kim, I. H. Song, H. D. Kim and J. S. Bae: J. Kor. Ceram. Soc., 46 (2009) 35 (Korean). https://doi.org/10.4191/KCERS.2009.46.1.035
  3. I. S. Han, J. C. Park, S. Y. Kim, K. S. Hong and H. J. Hwang: J. Kor. Ceram. Soc., 44 (2007) 162 (Korean). https://doi.org/10.4191/KCERS.2007.44.3.162
  4. P. H. Tewari, A. J. Hunt, and K. D. Loffus: Mater. Lett., 3 (1985) 363. https://doi.org/10.1016/0167-577X(85)90077-1
  5. S. H. Hyun, C. H. Lee, D. J. Kim and D. J. Seong: J. Kor. Ceram. Soc., 34 (1997) 969 (Korean).
  6. S. D. Bhagat, Y. H. Kim, Y. S. A. and J. G. Yeo: App. Surf. Sci., 253 (2007) 3231. https://doi.org/10.1016/j.apsusc.2006.07.016
  7. N. Hüsing and U. Schubert: Angew. Chem. Int. Ed., 37 (1998) 22. https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I
  8. A. Soleimani Dorcheh and M. H. Abbasi: J. Mater. Proc. Tech., 199 (2008) 10. https://doi.org/10.1016/j.jmatprotec.2007.10.060
  9. J. Zarzycki and L. Esquivias: Third International Conference in Ultrastructure Processing of Ceramics, Ceramics, Glasses and Composite Session III, San Die go, Feb. (1987) 23.
  10. S. Y. Kim, K. H. Lee, S. Y. Bae and K. P. Yoo: Korean Chem. Eng. Res., 36 (1998) 293 (Korean).
  11. A. Venkateswara RaO, G. M. Pajonk, D. Haranath, P. B. Wagh: Micro. Mater., 12 (1997) 63. https://doi.org/10.1016/S0927-6513(97)00066-7
  12. A. Venkateswara RaO, Manish M. Kulkarni: Materials Chemistry and Physics, 7 (2002) 819.
  13. G. S. Kim and S. H. Hyun: J. Kor. Ceram. Soc., 4 (2001) 5 (Korean).