• Title/Summary/Keyword: surface modeling

Search Result 2,242, Processing Time 0.026 seconds

Boolean Operation of Non-manifold Model with the Data Structure of Selective Storage (선택저장 자료구조를 이용한 복합다양체 모델의 불리언 작업)

  • 유병현;한순흥
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.293-300
    • /
    • 2000
  • The non-manifold geometric modeling technique is to improve design process and to Integrate design, analysis, and manufacturing by handling mixture of wireframe model, surface model, and solid model in a single data structure. For the non-manifold geometric modeling, Euler operators and other high level modeling methods are necessary. Boolean operation is one of the representative modeling method for the non-manifold geometric modeling. This thesis studies Boolean operations of non-manifold model with the data structure of selective storage. The data structure of selective storage is improved non-manifold data structure in that existing non-manifold data structures using ordered topological representation method always store non-manifold information even if edges and vortices are in the manifold situation. To implement Boolean operations for non-manifold model, intersection algorithm for topological cells of three different dimensions, merging and selection algorithm for three dimensional model, and Open Inventor(tm), a 3D toolkit from SGI, are used.

  • PDF

Study on the Airfoil Shape Design Optimization Using Database based Genetic Algorithms (데이터베이스 기반 유전 알고리즘을 이용한 효율적인 에어포일 형상 최적화에 대한 연구)

  • Kwon, Jang-Hyuk;Kim, Jin;Kim, Su-Whan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.58-66
    • /
    • 2007
  • Genetic Algorithms (GA) have some difficulties in practical applications because of too many function evaluations. To overcome these limitations, an approximated modeling method such as Response Surface Modeling(RSM) is coupled to GAs. Original RSM method predicts linear or convex problems well but it is not good for highly nonlinear problems cause of the average effect of the least square method(LSM). So the locally approximated methods. so called as moving least squares method(MLSM) have been used to reduce the error of LSM. In this study, the efficient evolutionary GAs tightly coupled with RSM with MLSM are constructed and then a 2-dimensional inviscid airfoil shape optimization is performed to show its efficiency.

Analysis of Structural joints Using Flexibility Influence Coefficient (유연성 영향 계수를 이용한 구조물의 결합부 해석)

  • 이재운;고강호;이수일;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.831-836
    • /
    • 1994
  • This paper presents rational modeling and analysis method for complex structures with various structural joints. For modeling of structural joint, a general modeling technique is newly proposed by flexibility influence coefficient and inverse of flexibility matrix and static reduction concept which is applied to the retained DOFs(degrees of freedom) of detailed finite element model of struction joints. By this method,joint model with contact surface. which can not be reduced by the general reduction theory such as Guyan reduction theory ,can be reduced effectively. And in this method, the nonlinearity of the contact surface can be linearized within a proper range and the boundary effects of joint region can be excluded. Using the proposed method, screwed joint,glued joint and bolted joint are analyzed. And the effectiveness of the proposed method is verified by experiments.

  • PDF

Numerical Modeling of Perturbation Effects of Electrostatic Probe into 2D ICP(inductively coupled plasma) (2D-ICP(inductively coupled plasma)에서 정전 탐침 삽입 시의 플라즈마 수치 계산)

  • Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • Numerical modeling is used to investigate the perturbation of a single Langmuir probe (0.2 mm diameter shielded with 6 mm insulator) inserted along the center axis of a cylindrical inductively coupled plasma chamber filled with Ar at 10 mTorr and driven by 13 MHz. The probe was driven by a sine wave. When the probe tip is close to a substrate by 24.5 mm, the probe characteristics was unperturbed. At 10 mm above the substrate, the time averaged electric potential distribution around the tip was severly distorted making a normal probe analysis impossible.

Statistical Modeling of Pretilt Angle Control using Ion-beam Alignment on Nitrogen Doped Diamond-like Carbon Thin Film

  • Kang, Hee-Jin;Lee, Jung-Hwan;Han, Jung-Min;Yun, Il-Gu;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.297-300
    • /
    • 2006
  • The response surface modeling of the pretilt angle control using ion-beam (IB) alignment on nitrogen doped diamond-like carbon (NDLC) thin film layer is investigated. This modeling is used to analyze the variation of the pretilt angle under various process conditions. IB exposure angle and IB exposure time are considered as input factors. The analysis of variance technique is settled to analyze the statistical significance, and effect plots are also investigated to examine the relationships between the process parameters and the response. The model can allow us to reliably predict the pretilt angle with respect to the varying process conditions.

Shape Optimization of Shell Surfaces Based on Linkage Framework between B-spline Modeling and Finite Element Analysis (유한요소해석과 B-스플라인 모델링의 연동에 기초한 쉘 곡면의 형상 최적 설계)

  • 김현철;노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.169-176
    • /
    • 2003
  • In the present study, a shape design optimization scheme in shell structures is implemented based on the integrated framework of geometric modeling and analysis. The common representation of B-spline surface patch is used for geometric modeling. A geometrically-exact shell finite element is implemented. Control points or the surface are employed as design variables. In the computation of shape sensitivity, semi-analytical method is employed. Sequential linear programming is applied to the shape optimization of surfaces. The developed integrated framework should serve as a powerful tool to design and analysis of surfaces.

  • PDF

DSM GENERATION FROM IKONOS STEREO IMAGERY

  • Rau, Jiann-Yeou;Chen, Liang-Chien;Chang, Chih-Li
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.57-59
    • /
    • 2003
  • Digital surface model generation from IKONOS stereo imagery is a new challenge in photogrammetric community, especially when the satellite company does not provide the raw data as well as their ancillary ephemeris data. In this paper we utilized an estimated relief displacement azimuth and the nominal collection elevation data included in the metadata file to correct the relief displacement of GCPs, together with a linear transformation for geometric modeling of IKONOS imagery. Space intersection is performed by the trigonometric intersection assuming a parallel projection of IKONOS imagery due to its small FOV and frame size. In the experiment, less than 2-meters of RMSE in orbit modeling is achieved denoting the potential positioning accuracy of the IKONOS stereo imagery.

  • PDF

A Sweep Surface based on Two-Parameter Motion (2-변수 모션기반의 스윕곡면)

  • Yoon, Seung-Hyun;Lee, Ji-Eun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • We present a new technique for constructing a sweep surface using two-parameter motion. Firstly, a new rational B-spline motion with two parameters is introduced, which is obtained by extending its orientation curve and scaling curve to surface counterparts. A sweep surface is then defined by a single vertex v under the two-parameter motion and allows to represent different u-directional iso-curves depending on parameter ${\upsilon}$. Efficient techniques for modeling and editing the surface are achieved by intuitively controlling the two-parameter motion. We demonstrate the effectiveness of our technique with experimental results on modeling and editing a 3D propeller model.

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF

Statistical Modeling of Pretilt Angle Control on the Homogeneous Polyimide Surface as a Function of Rubbing Strength and Baking Temperature

  • Kang Hee-Jin;Lee Jung-Hwan;Hwang Jeoung-Yeon;Yun Il-Gu;Seo Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.81-86
    • /
    • 2006
  • In this paper, the response surface modeling of the control of the pretilt angle in the nematic liquid crystal on the homogeneous polyimide surface with different surface treatment is investigated. The pretilt angle is one of the main factors to determine the alignment of the liquid crystal display. The pretilt angle is measured to analyze the variation of the characteristics on the various process conditions. The rubbing strength and the hard baking temperature are considered as input factors. After the design of experiments is performed, the process model is then explored using the response surface methodology. The analysis of variance is used to analyze the statistical significance and the effect plots are also investigated to examine the relationship between the process parameters and the response.