• Title/Summary/Keyword: surface microhardness

Search Result 320, Processing Time 0.02 seconds

Effects of Calamansi Soju and Other Alcoholic Beverages on Resin Restorations

  • Jeong, Moon-Jin;Heo, Kyungwon;Lee, Myoung-Hwa;Jeong, Myeong-Ju;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.251-259
    • /
    • 2021
  • Background: The purpose of this study was to investigate the effects of commercially available calamansi soju and other alcoholic beverages on the microhardness and erosion of resin restorations. Methods: In this study, we evaluated the effects of Calamansi soju, Chamisul fresh, Cass fresh, and Gancia Moscato D'asti on resin restorations. Jeju Samdasoo and Coca-Cola were used as negative and positive controls, respectively. Specimens to be immersed in the beverages were manufactured using composite resin according to the product instructions. In each group, the surface microhardness was measured using a surface microhardness instrument before and after immersion for 5, 15, 30, and 60 minutes. The pattern of change in the surface of the composite resin was observed under a scanning electron microscope (SEM). Paired t-tests, one-way ANOVA, and repeated measures ANOVA were performed to compare the surface microhardness of the specimens, and the Tukey test was used as a post hoc test. Results: The pH of all beverages except Jeju Samdasoo was <5.5, which is the critical pH that can induce erosion. The difference in surface microhardness of the composite resin before and after immersion for 60 minutes was significant in all groups. In particular, the largest change in surface microhardness was observed in the calamansi soju group. In the SEM analysis, loss of composite resin was observed in all groups except the Jeju Samdasoo group, and rough surfaces with pores of various sizes were observed. Conclusion: In this study, all beverages except Jeju Samdasoo decreased the microhardness of the composite resin surface, and it was confirmed that calamansi soju had the greatest change.

AN EFFECT OF Nd : VAG LASER IRRADIATION ON THE MICROHARDNESS OF ROOT SURFACE (Nd : YAG layer 조사가 치근면의 미세경도에 미치는 영향)

  • Ahn, Jae-Hyeun;Kim, Byung-Ok;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.614-622
    • /
    • 1995
  • Root caries is very frequently developed on exposed root surface after periodontal surgical treatment. In order to determine the anti-caries effect of Nd : YAG laser irradiation on periodontally exposed root surface, 40 mandibular molar teeth that had been extracted due to excessive periodontal destruction were used as the experimental teeth. All teeth were treated by the same procedure as conventional periodontal root treatment, ie thorough scaling, root planing and root conditioning with tetracycline HCl(100mg/ml, 5min.). Within middle one third of root, mesial half surface(20) or distal half surface(20) was randomly irradiated at various power of 1.0W, 2.0W, 3.0W and 4.0W for 60 seconds by non-contact(5mm) delivery of a pulsed Nd : YAG laser(EN.EL.EN060, Italy). The microhardness was measured by Vikers microhardness tester(Wilson, USA) at 2mm/second of jog speed under 100gm load. The difference of microhardness between irradiated side and non-irradiated side was statistically analyzed ANOVA and Duncan's method. Following results were obtained ; 1. The microhardness(Knoop hardness number) was significantly higher in laser irradiated surface than non-irradiated surface(p<0.05). 2. There was no significant difference in microhardness between experimental groups classified by different laser power(p>0.1). The results suggest that Nd : YAG laser irradiation on exposed root suface after periodontal therapy may inhibit the root caries development by enhancing surface microhardness.

  • PDF

Effect of different denture cleansers on surface roughness and microhardness of artificial denture teeth

  • Yuzugullu, Bulem;Acar, Ozlem;Cetinsahin, Cem;Celik, Cigdem
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.333-338
    • /
    • 2016
  • PURPOSE. The aim of this study was to compare the effects of different denture cleansers on the surface roughness and microhardness of various types of posterior denture teeth. MATERIALS AND METHODS. 168 artificial tooth specimens were divided into the following four subgroups (n=42): SR Orthotyp PE (polymethylmethacrylate); SR Orthosit PE (Isosit); SR Postaris DCL (double cross-linked); and SR Phonares II (nanohybrid composite). The specimens were further divided according to the type of the denture cleanser (Corega Tabs (sodium perborate), sodium hypochlorite (NaOCl), and distilled water (control) (n=14)) and immersed in the cleanser to simulate a 180-day immersion period, after which the surface roughness and microhardness were tested. The data were analyzed using the Kruskal-Wallis test, Conover's nonparametric multiple comparison test, and Spearman's rank correlation analysis (P<.05). RESULTS. A comparison among the denture cleanser groups showed that NaOCl caused significantly higher roughness values on SR Orthotyp PE specimens when compared with the other artificial teeth (P<.001). Furthermore, Corega Tabs resulted in higher microhardness values in SR Orthotyp PE specimens than distilled water and NaOCl (P<.005). The microhardness values decreased significantly from distilled water, NaOCl, to Corega Tabs for SR Orthosit PE specimens (P<.001). SR Postaris DLC specimens showed increased microhardness when immersed in distilled water or NaOCl when compared with immersion in Corega Tabs (P<.003). No correlation was found between surface roughness and microhardness (r=0.104, P=.178). CONCLUSION. NaOCl and Corega Tabs affected the surface roughness and microhardness of all artificial denture teeth except for the new generation nanohybrid composite teeth.

The effect of various surface coatings on microleakage and microhardness of light-cured glass ionomer restoration (수종 표면 보호재의 도포가 광중합형 유리 아이오너머 수복물의 변연 누출 및 미세 경도에 미치는 영향)

  • Kim, Gi-Seob;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.3
    • /
    • pp.495-510
    • /
    • 1997
  • The purpose of this study was to evaluate the efficacy of several surface coating agents in preventing microleakage and increasing microhardness of light-cured glass ionomer restoration. 50 and 25 sound molar teeth were used for the microleakage test and microhardness test respectively. Data were analyzed statistically using Kruskal-Wallis and/or Mann-Whitney test. The results of the present study were as follows: 1. The effect of surface coating in reducing microleakage was proven only at the gingival margin of restorations with statistical significance(p<.05). 2. The distribution of microleakage score at gingival margin was shown to be better than that of occlusal margin in general but with no statistically significant differences(p>.05). 3. No statistically significant differences in microhardness could be found between groups (p>.05) regardless of depth of measurement. 4. Under the present experimental conditions, the types or application of surface coating agents did not impose any significant effect on microhardness of glass ionomer restorative material whereas the protective effect of surface coating in reducing microleakage was partly proven.

  • PDF

Effect of Blood Contamination on Vickers Microhardness and Surface Morphology of Mineral Trioxide Aggregate

  • Jaehyun Seung;Seong-Jin Shin;Byounghwa Kim;Ji-Myung Bae;Jiyoung Ra
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • This study aimed to investigate the effects of blood contamination on the Vickers hardness and the surface morphology of premixed MTA and compare them with the effects on conventional MTA. The Vickers microhardness of Endocem MTA Premixed Regular (EP) and ProRoot MTA (PM) was assessed after immersion in fetal bovine serum (FBS) and saline. Stem cells from human exfoliated deciduous teeth (SHED) were seeded on MTA after immersion in FBS, saline, and deionized water (DW). Cell adhesion patterns and surface morphology were visualized via scanning electron microscopy (SEM). The surface microhardness of EP and PM in FBS was lower than in saline. However, short-term exposure of PM to FBS did not reduce the microhardness compared to saline. Angular crystals formed in water, while rounded crystals with more air voids appeared in FBS. Favorable SHED attachment occurred in all groups. Overall, the surface hardness of EP and PM decreased after FBS exposure, although PM was less influenced. We suggest minimizing the amount of bleeding when using MTA clinically; nevertheless, PM remains an option with more expected blood contamination than EP. In summary, exposure to FBS decreased mechanical performance but allowed cell adhesion for both MTAs, with PM being more resistant to these changes.

Effect of Dentin Bonding Agent Acidity on Surface Microhardness of Mineral Trioxide Aggregate

  • Yun-Hui Im;Yoon Lee
    • Journal of Korean Dental Science
    • /
    • v.17 no.1
    • /
    • pp.36-44
    • /
    • 2024
  • Purpose: This study investigated the effect of dentin bonding agent acidity on surface microhardness of MTA. Materials and Methods: Forty cylindrical molds (3 mm×5 mm) were prepared, and three dentin bonding agents with different acidities: Adper Single Bond 2 (ASB), Single Bond Universal (SBU), and Clearfil SE bond 2 (CSE) were applied to the inner surface of the molds (n=10). No bonding agent was applied in the control group. MTA was mixed and inserted into the molds and sealed with a wet cotton pellet for 4 days. After setting, the Vickers microhardness (HV) test was done at 200, 400, 600 ㎛ from the inner surface of the mold. One-way ANOVA was conducted for all samples. A P-value of less than .05 was considered significant. Tukey HSD test was performed for post-hoc analysis. Results: The mean HV values and standard deviations were 67.02±11.38 (Con), 48.76±11.33 (ASB), 43.78±11.19 (CSE), 37.84±9.36 (SBU), respectively. The difference between the control group and the experimental groups was statistically significant (P<0.001). The difference between ASB and SBU was statistically significant (P<0.001), while the difference between SBU and CSE was not. There were no statistically significant differences between the various points from the inner surface of the mold within each group (P>0.05). Conclusion: Results of the current study indicate that use of dentin bonding agents with MTA can reduce the surface microhardness of MTA. Moreover, there is a direct relationship between the acidity of dentin bonding agents and the surface microhardness of MTA.

Hydrogen Embrittlement of 680 MPa DP sheet steel with Electrochemical Hydrogen charging conditions of Two Electrolytes (2종 전해질에서의 전기화학적 수소주입조건에 따른 680 MPa DP 박강판의 수소취성)

  • Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.257-262
    • /
    • 2014
  • In this paper, the behavior of hydrogen embrittlement of 680MPa DP sheet steel according to hydrogen charging conditions in acid and alkali electrolytes atmosphere was investigated. At this time, 0.5 M $H_2SO_4$ and 0.5M NaOH was used for electrolytes atmosphere and the effect on embrittlemnet of 680MPa DP sheet steel according to current density and charging time was evaluated by the change of subsurface microhardness in DP specimens chared hydrogen. As a result of this experiment, the microhardness of the layer directly below the surface was increased more than the microhardness of the subsurface zone in both electrolytes cases, but the change of the subsurface microhardness in both electrolytes was more affected by the increase of charging time than the increase of current density. The microhardness of subsurface zone in 0.5 M $H_2SO_4$ acid electrolyte was increased more than the microhardness in 0.5M NaOH alkali electrolyte. It was supposed that acid atmosphere was more sensitive to hydrogen embrittlement than alkali atmosphere on electrolyte atmosphere of hydrogen charge.

Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions

  • Shokouhinejad, Noushin;Jafargholizadeh, Leila;Khoshkhounejad, Mehrfam;Nekoofar, Mohammad Hossein;Raoof, Maryam
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.253-257
    • /
    • 2014
  • Objectives: This study aimed to compare the surface microhardness of mineral trioxide aggregate (MTA) samples having different thicknesses and exposed to human blood from one side and with or without a moist cotton pellet on the other side. Materials and Methods: Ninety cylindrical molds with three heights of 2, 4, and 6 mm were fabricated. In group 1 (dry condition), molds with heights of 2, 4, and 6 mm (10 molds of each) were filled with ProRoot MTA (Dentsply Tulsa Dental), and the upper surface of the material was not exposed to any additional moisture. In groups 2 and 3, a distilled water- or phosphate-buffered saline (PBS)-moistened cotton pellet was placed on the upper side of MTA, respectively. The lower side of the molds in all the groups was in contact with human blood-wetted foams. After 4 day, the Vickers microhardness of the upper surface of MTA was measured. Results: In the dry condition, the 4 and 6 mm-thick MTA samples showed significantly lower microhardness than the 2 mm-thick samples (p = 0.003 and p = 0.001, respectively). However, when a distilled water- or PBS-moistened cotton pellet was placed over the MTA, no significant difference was found between the surface microhardness of samples having the abovementioned three thicknesses of the material (p = 0.210 and p = 0.112, respectively). Conclusions: It could be concluded that a moist cotton pellet must be placed over the 4 to 6 mm-thick MTA for better hydration of the material. However, this might not be necessary when 2 mm-thick MTA is used.

Comparison of Surface Microhardness of the Flowable Bulk-Fill Resin and the Packable Bulk-Fill Resin according to Light Curing Time and Distance

  • Hyung-Min Kim;Moon-Jin Jeong;Hee-Jung Lim;Do-Seon Lim
    • Journal of dental hygiene science
    • /
    • v.23 no.2
    • /
    • pp.123-131
    • /
    • 2023
  • Background: As a restorative material used to treat dental caries, the light-curing type resin is widely used, but it has the disadvantage of polymerization shrinkage. The Bulk-Fill composite resin was developed to solve these shortcomings, but the existing research mainly focused on comparing the physical properties of a composite resin and a Bulk-Fill resin. A study on the light curing time and distance of the Bulk-Fill resin itself tend to be lacking. Methods: This study compares the surface microhardness of specimens prepared by varying the light curing time and distance of smart dentin replacement (SDR) as a flowable Bulk-Fill resin and Tetric N-ceram as a packable Bulk-Fill resin, and confirms the polymerization time and distance that becomes the optimum hardness. To determine the hardness of the specimen, it was measured using the Vickers Hardness Number (Matsuzawa MMT-X, Japan). Results: In SDR, the surface microhardness decreased as the distance increased in all time groups in the change distance from the curing tip. In the change of light curing time with respect to the distance from curing tip, the surface microhardness increased as the time increased. In Tetric N-ceram, the surface microharness showed no significant difference in the change of the distance of curing tip in the group of 20 and 60 second. But in the group of 10 and 40 seconds, decreased as the distance increased. The surface microharness increased as the light curing time increased in all distance groups. Conclusion: When using SDR and Tetric N-ceram in clinical practice, it is considered that as the distance from the polymerization reactor tip increases, a longer light curing time than the polymerization time recommended by the manufacturer is required.

A COMPARATIVE STUDY OF MICROHARDNESS OF DUAL-CURE AND LIGHT-CURE PIT AND FISSURE SEALANT (이중중합 치면열구 전색제와 광중합 치면열구 전색제의 미세경도에 관한 비교연구)

  • Lee, Kwang-Soo;Kim, Hyung-Doo;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.4
    • /
    • pp.906-914
    • /
    • 1996
  • Due to the various reason, sealing of pit & fissure might be imperfect. One of these reason can be the fracture of sealant material because of the low hardness value of sealing material. The purpose of this in vitro study was to evaluate the microhardness of two different curing type pit and fissure sealants: Dual-cure and Light-cure. The result from the present study can be summarized as follows: 1. All pit and fissure sealants that used in this study showed statistically significant difference in their microhardness of upper and lower surface. (P <0.05) 2. Except of lower surface of teethmate, microhardness of 40-second curing sealant was statistically higher than that of 20-second curing sealant. (P <0.05) 3. In comparison of sealants, microhardness of dual-cure sealant was statistically higher than that of light-cure sealant. Above results suggest that the use of dual-cure sealant and longer curing time are recommended.

  • PDF