DOI QR코드

DOI QR Code

Effect of Dentin Bonding Agent Acidity on Surface Microhardness of Mineral Trioxide Aggregate

  • Yun-Hui Im (Department of Dentistry, Wonju College of Medicine, Yonsei University) ;
  • Yoon Lee (Department of Conservative Dentistry, College of Dentistry, Gangneung-Wonju National University)
  • Received : 2023.11.08
  • Accepted : 2023.12.05
  • Published : 2024.03.30

Abstract

Purpose: This study investigated the effect of dentin bonding agent acidity on surface microhardness of MTA. Materials and Methods: Forty cylindrical molds (3 mm×5 mm) were prepared, and three dentin bonding agents with different acidities: Adper Single Bond 2 (ASB), Single Bond Universal (SBU), and Clearfil SE bond 2 (CSE) were applied to the inner surface of the molds (n=10). No bonding agent was applied in the control group. MTA was mixed and inserted into the molds and sealed with a wet cotton pellet for 4 days. After setting, the Vickers microhardness (HV) test was done at 200, 400, 600 ㎛ from the inner surface of the mold. One-way ANOVA was conducted for all samples. A P-value of less than .05 was considered significant. Tukey HSD test was performed for post-hoc analysis. Results: The mean HV values and standard deviations were 67.02±11.38 (Con), 48.76±11.33 (ASB), 43.78±11.19 (CSE), 37.84±9.36 (SBU), respectively. The difference between the control group and the experimental groups was statistically significant (P<0.001). The difference between ASB and SBU was statistically significant (P<0.001), while the difference between SBU and CSE was not. There were no statistically significant differences between the various points from the inner surface of the mold within each group (P>0.05). Conclusion: Results of the current study indicate that use of dentin bonding agents with MTA can reduce the surface microhardness of MTA. Moreover, there is a direct relationship between the acidity of dentin bonding agents and the surface microhardness of MTA.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1C1B5041276).

References

  1. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993;19:591-5. https://doi.org/10.1016/S0099-2399(06)80271-2
  2. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod. 1993;19:541-4. https://doi.org/10.1016/S0099-2399(06)81282-3
  3. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review - part I: chemical, physical, and antibacterial properties. J Endod. 2010;36:16-27. https://doi.org/10.1016/j.joen.2009.09.006
  4. Asgary S, Parirokh M, Eghbal MJ, Brink F. Chemical differences between white and gray mineral trioxide aggregate. J Endod. 2005;31:101-3.
  5. Belobrov I, Parashos P. Treatment of tooth discoloration after the use of white mineral trioxide aggregate. J Endod. 2011;37:1017-20. https://doi.org/10.1016/j.joen.2011.04.003
  6. Camilleri J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod. 2014;40:436-40. https://doi.org/10.1016/j.joen.2013.09.040
  7. Akbari M, Rouhani A, Samiee S, Jafarzadeh H. Effect of dentin bonding agent on the prevention of tooth discoloration produced by mineral trioxide aggregate. Int J Dent. 2012;2012:563203.
  8. Choi YL, Jang YE, Kim BS, Kim JW, Kim Y. Pre-application of dentin bonding agent prevents discoloration caused by mineral trioxide aggregate. BMC Oral Health. 2020;20:163.
  9. Marciano MA, Costa RM, Camilleri J, Mondelli RF, Guimaraes BM, Duarte MA. Assessment of color stability of white mineral trioxide aggregate angelus and bismuth oxide in contact with tooth structure. J Endod. 2014;40:1235-40. https://doi.org/10.1016/j.joen.2014.01.044
  10. Razzaq FA, Mahdee AF. Effect of Dentine Bonding and Laser on Prevention of Teeth Discoloration Produced by Gray Mineral Trioxide Aggregate and Triple Antibiotic Paste: A Comparative In vitro Study. J Res Med Dent Sci. 2020;8:187-94.
  11. Lee YL, Lee BS, Lin FH, Lin AY, Lan WH, Lin CP. Effects of physiological environments on the hydration behavior of mineral trioxide aggregate. Biomaterials. 2004;25:787-93. https://doi.org/10.1016/S0142-9612(03)00591-X
  12. Namazikhah MS, Nekoofar MH, Sheykhrezae MS, Salariyeh S, Hayes SJ, Bryant ST, Mohammadi MM, Dummer PM. The effect of pH on surface hardness and microstructure of mineral trioxide aggregate. Int Endod J. 2008;41:108-16. https://doi.org/10.1111/j.1365-2591.2007.01325.x
  13. Igarashi S, Bentur A, Mindess S. Microhardness testing of cementitious materials. Adv Cem Based Mater. 1996;4:48-57. https://doi.org/10.1016/S1065-7355(96)90051-6
  14. Beaudoin JJ, Feldman RF. A study of mechanical properties of autoclaved Calcium silicate systems. Cem Concr Res. 1975;5:103-18. https://doi.org/10.1016/0008-8846(75)90069-1
  15. Tsujimoto M, Tsujimoto Y, Ookubo A, Shiraishi T, Watanabe I, Yamada S, Hayashi Y. Timing for composite resin placement on mineral trioxide aggregate. J Endod. 2013;39:1167-70. https://doi.org/10.1016/j.joen.2013.06.009
  16. Atabek D, Sillelioglu H, Olmez A. Bond strength of adhesive systems to mineral trioxide aggregate with different time intervals. J Endod. 2012;38:1288-92. https://doi.org/10.1016/j.joen.2012.06.004
  17. Bayrak S, Tunc ES, Saroglu I, Egilmez T. Shear bond strengths of different adhesive systems to white mineral trioxide aggregate. Dent Mater J. 2009;28:62-7. https://doi.org/10.4012/dmj.28.62
  18. Kayahan MB, Nekoofar MH, Kazandag M, Canpolat C, Malkondu O, Kaptan F, Dummer PM. Effect of acid-etching procedure on selected physical properties of mineral trioxide aggregate. Int Endod J. 2009;42:1004-14. https://doi.org/10.1111/j.1365-2591.2009.01610.x
  19. Shin JH, Jang JH, Park SH, Kim E. Effect of mineral trioxide aggregate surface treatments on morphology and bond strength to composite resin. J Endod. 2014;40:1210-6. https://doi.org/10.1016/j.joen.2014.01.027
  20. Giuliani V, Nieri M, Pace R, Pagavino G. Effects of pH on surface hardness and microstructure of mineral trioxide aggregate and Aureoseal: an in vitro study. J Endod. 2010;36:1883-6. https://doi.org/10.1016/j.joen.2010.08.015
  21. Nekoofar MH, Aseeley Z, Dummer PMH. The effect of various mixing techniques on the surface microhardness of mineral trioxide aggregate. Int Endod J. 2010;43:312-20. https://doi.org/10.1111/j.1365-2591.2010.01683.x
  22. Kaup M, Schafer E, Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015;11:16.
  23. Wang Z, Ma J, Shen Y, Haapasalo M. Acidic pH weakens the microhardness and microstructure of three tricalcium silicate materials. Int Endod J. 2015;48:323-32. https://doi.org/10.1111/iej.12318
  24. Perdigao J, Sezinando A, Monteiro PC. Effect of substrate age and adhesive composition on dentin bonding. Oper Dent. 2013;38:267-74. https://doi.org/10.2341/12-307-L
  25. Isolan CP, Valente LL, Munchow EA, Basso GR, Pimentel AH, Schwantz JK, da Silva AV, Moraes RR. Bond strength of a universal bonding agent and other contemporary dental adhesives applied on enamel, dentin, composite, and porcelain. Appl Adhes Sci. 2014;2:25.
  26. Sanares AM, Itthagarun A, King NM, Tay FR, Pashley DH. Adverse surface interactions between one-bottle light-cured adhesives and chemical-cured composites. Dent Mater. 2001;17:542-56. https://doi.org/10.1016/S0109-5641(01)00016-1
  27. Shokouhinejad N, Jafargholizadeh L, Khoshkhounejad M, Nekoofar MH, Raoof M. Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions. Restor Dent Endod. 2014;39:253-7. https://doi.org/10.5395/rde.2014.39.4.253
  28. Malacarne J, Carvalho RM, de Goes MF, Svizero N, Pashley DH, Tay FR, Yiu CK, de Oliveira Carrilho MR. Water sorption/solubility of dental adhesive resins. Dent Mater. 2006;22:973-80. https://doi.org/10.1016/j.dental.2005.11.020
  29. Zecin-Deren A, Lukomska-Szymanska M, Szczesio-Wlodarczyk A, Piwonski I, Sokolowski J, Lapinska B. The Influence of Application Protocol of Simplified and Universal Adhesives on the Dentin Bonding Performance. Appl Sci. 2020;10:124.
  30. Jang JH, Lee MG, Woo SU, Lee CO, Yi JK, Kim DS. Comparative study of the dentin bond strength of a new universal adhesive. Dent Mater J. 2016;35:606-12. https://doi.org/10.4012/dmj.2015-422
  31. Takamizawa T, Barkmeier WW, Tsujimoto A, Berry TP, Watanabe H, Erickson RL, Latta MA, Miyazaki M. Influence of different etching modes on bond strength and fatigue strength to dentin using universal adhesive systems. Dent Mater. 2016;32:e9-21.
  32. Jayasheel A, Niranjan N, Pamidi H, Suryakanth MB. Comparative Evaluation of shear Bond Strength of universal Dental Adhesives - An in vitro study. J Clin Exp Dent. 2017;9:e892-6.
  33. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21:349-53. https://doi.org/10.1016/S0099-2399(06)80967-2
  34. Tian J, Zhang Y, Lai Z, Li M, Huang Y, Jiang H, Wei X. Ion release, microstructural, and biological properties of iRoot BP Plus and ProRoot MTA exposed to an acidic environment. J Endod. 2017;43:163-8. https://doi.org/10.1016/j.joen.2016.10.011
  35. Maeda T, Yamaguchi K, Takamizawa T, Rikuta A, Tsubota K, Ando S, Miyazaki M. pH changes of self-etching primers mixed with powdered dentine. J Dent. 2008;36:606-10.
  36. Iwasa M, Tsubota K, Shimamura Y, Ando S, Miyazaki M, Platt JA. pH changes upon mixing of single-step self-etching adhesives with powdered dentin. J Adhes Dent. 2011;13:207-12.