• Title/Summary/Keyword: surface methodology

Search Result 1,981, Processing Time 0.039 seconds

Synthesis of Ethyl levulinate from Chitosan Using Homogeneous Acid Catalyst (Chitosan으로부터 균일 산 촉매를 이용한 Ethyl Levulinate의 합성)

  • Jeong, Gwi-Taek;Kim, Sung-Koo
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.266-272
    • /
    • 2020
  • In this study, the production of ethyl levulinate from chitosan using successive acid-catalyzed hydrolysis and esterification was investigated. To optimize and analysis the reaction factors and heir reciprocal interaction, response surface methodology was introduced. In the effect of water content in ethanol solvent, the production yield of ethyl levulinate was high at 5% water content (or 95% ethanol). As a result of optimization of reaction factors, 30.1% ethyl levulinate yield was obtained under the condition of 200 ℃, 3.19% chitosan, 0.49M sulfuric acid, 5% water content, and 58 min. Finally, the formation yield of ethyl levulinate was tended to enhance by increase of combined severity factor. This result indicated that the potential of chitosan as feedstock for production of chemicals and fuels.

Monitoring of Maillard Reaction Characteristics under Various Roasting Conditions of Polygonatum odoratum Root (둥굴레 근경의 가열조건에 따른 갈변반응 특성의 모니터링)

  • 박난영;정용진;이기동;권중호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.4
    • /
    • pp.647-654
    • /
    • 2000
  • Response surface methodology (RSM) was used for monitoring the changes in browning reaction and organoleptic quality of roasted Polygonatum roots under various of roasting conditions. Total free sugar decreased up to 13$0^{\circ}C$, but increased above 13 $0^{\circ}C$. The amounts of total free amino acids decreased in proportional to the roasting temperature and time. Theronine, glycine and serine decreased by about 91~94% under the roasting conditions. Browning color intensity of water extracts increased with the roasting time up to around 18 min, but decreased over 18 min. The optimum conditions based on overall palatability of the roasted Polygonatum roots were 13$0^{\circ}C$ and 15 to 25 min. Organoleptic qualities of the roasted samples showed higher correlations with the changes in free amino acids.

  • PDF

Is the Korean Duty Free Shop Industry Monopolistic? (한국 면세점 산업의 구조, 독과점인가?)

  • Lee, Hee-Tae;Cha, Moon-Kyung
    • Journal of Distribution Science
    • /
    • v.14 no.10
    • /
    • pp.47-57
    • /
    • 2016
  • Purpose - This study's purpose is to investigate the market structure of the Korean duty free shop industry that has received recent attention from researchers and practitioners. By raising the question of whether or not the Korean duty free shop industry is unequivocally monopolistic, a wider viewpoint is provided. The study seeks to offer insights and managerial implications for marketers and policy makers who are in charge of regulating major Korean duty free shops. Research design, data, and methodology - The authors use secondary data from various sources, including Korea Customs Service and the Moodie Report, to investigate the structure of the duty free shop industry of Korea. Based on several theories, they present various criteria and statistical evidence such as K-firm concentration ratio, HHI, consumer substitutability, excess profit, and marketing costs. Results - In terms of consumer substitutability, it is difficult to confirm whether or not the Korean duty free shop industry is monopolistic. Notwithstanding monopoly characteristics in terms of market share, neither the company Lotte nor Shilla appear to have market dominating power. It is not easy for either of them to control prices or to achieve a much lower operational profit ratio due to a dominant bargaining power. Moreover, the license is not an economic rent. In this situation, it is not easy for these companies to obtain an excessive profit. Conclusions - Considering that most global duty free shops are trying to go upscale to improve bargaining power, it does not seem likely that rigid regulations are needed in the industry. Even though the Korean duty free industry ostensibly has a monopolistic structure, government and policy-makers should look beyond the surface. They should take global and other reasonable criteria into consideration when they establish or change regulation policies. Thorough understanding and appropriate support are needed for the Korean duty free shop industry. Additionally, duty free shops should position themselves as global companies struggling against unlimited international competition, rather than Korean domestic companies. At the same time, they need to give customers appropriate information about the benefits they provide.

Statistically Designed Enzymatic Hydrolysis for Optimized Production of Icariside II as a Novel Melanogenesis Inhibitor

  • Park, Jun-Seong;Park, Hye-Yoon;Rho, Ho-Sik;Ahn, Soo-Mi;Kim, Duck-Hee;Chang, Ih-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.110-117
    • /
    • 2008
  • Three kinds of prenylated flavonols, icariside I, icariside II, and icaritin, were isolated from an icariin hydrolysate and their effects on melanogenesis evaluated based on mushroom tyrosinase inhibition and quantifying the melanin contents in melanocytes. Although none of the compounds had an effect on tyrosinase activity, icariside II and icaritin both effectively inhibited the melanin contents with an $IC_{50}$ of 10.53 and $11.13{\mu}M$, respectively. Whereas icariside II was obtained from a reaction with ${\beta}$-glucosidase and cellulase, the icariin was not completely converted into icariside II. Thus, for the high-purity production of icariside II, the reaction was optimized using the response surface methodology, where an enzyme concentration of 5.0mg/ml, pH 7, $37.5^{\circ}C$, and 8 h reaction time were selected as the central conditions for the central composite design (CCD) for the enzymatic hydrolysis of icariin into icariside II using cellulase. Empirical models were developed to describe the relationships between the operating factors and the response (icariside II yield). A statistical analysis indicated that all four factors had a significant effect (p<0.01) on the icariside II production. The coefficient of determination $(R^2)$ was good for the model (0.9853), and the optimum production conditions for icariside II was an enzyme concentration of 7.5mg/ml, pH 5, $50^{\circ}C$, and 12 h reaction time. A good agreement between the predicted and experimental data under the designed optimal conditions confirmed the usefulness of the model. A laboratory pilot scale was also successful.

Large Increase in Leuconostoc citreum KM20 Dextransucrase Activity Achieved by Changing the Strain/Inducer Combination in an E. coli Expression System

  • Ko, Jin-A;Jeong, Hyung-Jae;Ryu, Young-Bae;Park, Su-Jin;Wee, Young-Jung;Kim, Do-Man;Kim, Young-Min;Lee, Woo-Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.510-515
    • /
    • 2012
  • A recombinant putative dextransucrase (DexT) was produced from Leuconostoc citreum KM20 as a 160 kDa protein, but its productivity was very low (264 U/l). For optimization, we examined enzyme activity in 7 Escherichia coli strains with inducer molecules such as lactose or IPTG. E. coli BL21-CodonPlus(DE3)-RIL exhibited the highest enzyme activity with lactose. Finally, DexT activity was remarkably increased by 12-fold under the optimized culture conditions of a cell density to start induction ($OD_{600}$) of 0.95, a lactose concentration of 7.5 mM, and an induction temperature of $17^{\circ}C$. These results may effectively apply to the heterologous expression of other large DexT genes.

Poly(L-Lactide)-Degrading Enzyme Production by Actinomadura keratinilytica T16-1 in 3 L Airlift Bioreactor and Its Degradation Ability for Biological Recycle

  • Sukkhum, Sukhumaporn;Tokuyama, Shinji;Kitpreechavanich, Vichien
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 2012
  • The optimal physical factors affecting enzyme production in an airlift fermenter have not been studied so far. Therefore, the physical parameters such as aeration rate, pH, and temperature affecting PLA-degrading enzyme production by Actinomadura keratinilytica strain T16-1 in a 3 l airlift fermenter were investigated. The response surface methodology (RSM) was used to optimize PLA-degrading enzyme production by implementing the central composite design. The optimal conditions for higher production of PLA-degrading enzyme were aeration rate of 0.43 vvm, pH of 6.85, and temperature at $46^{\circ}C$. Under these conditions, the model predicted a PLA-degrading activity of 254 U/ml. Verification of the optimization showed that PLA-degrading enzyme production of 257 U/ml was observed after 3 days cultivation under the optimal conditions in a 3 l airlift fermenter. The production under the optimized condition in the airlift fermenter was higher than un-optimized condition by 1.7 folds and 12 folds with un-optimized medium or condition in shake flasks. This is the first report on the optimization of environmental conditions for improvement of PLA-degrading enzyme production in a 3 l airlift fermenter by using a statistical analysis method. Moreover, the crude PLA-degrading enzyme could be adsorbed to the substrate and degraded PLA powder to produce lactic acid as degradation products. Therefore, this incident indicates that PLA-degrading enzyme produced by Actinomadura keratinilytica NBRC 104111 strain T16-1 has a potential to degrade PLA to lactic acid as a monomer and can be used for the recycle of PLA polymer.

Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Chlorella sorokiniana Treating Livestock Wastewater

  • Lee, Tae-Hun;Jang, Jae Kyung;Kim, Hyun-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2010-2018
    • /
    • 2017
  • Mixotrophic microalgal growth gives a great premise for wastewater treatment based on photoautotrophic nutrient utilization and heterotrophic organic removal while producing renewable biomass. There remains a need for a control strategy to enrich them in a photobioreactor. This study performed a series of batch experiments using a mixotroph, Chlorella sorokiniana, to characterize optimal guidelines of mixotrophic growth based on a statistical design of the experiment. Using a central composite design, this study evaluated how temperature and light irradiance are associated with $CO_2$ capture and organic carbon respiration through biomass production and ammonia removal kinetics. By conducting regressions on the experimental data, response surfaces were created to suggest proper ranges of temperature and light irradiance that mixotrophs can beneficially use as two types of energy sources. The results identified that efficient mixotrophic metabolism of Chlorella sorokiniana for organics and inorganics occurs at the temperature of $30-40^{\circ}C$ and diurnal light condition of $150-200{\mu}mol\;E{\cdot}m^{-2}{\cdot}s^{-1}$. The optimal specific growth rate and ammonia removal rate were recorded as 0.51/d and 0.56/h on average, respectively, and the confirmation test verified that the organic removal rate was $105mg\;COD{\cdot}l^{-1}{\cdot}d^{-1}$. These results support the development of a viable option for sustainable treatment and effluent quality management of problematic livestock wastewater.

Evolutionary Optimization of Pulp Digester Process Using D-optimal DOE and RSM

  • Chu, Young-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.395-395
    • /
    • 2000
  • Optimization of existing processes becomes more important than the past as environmental problems and concerns about energy savings stand out. When we can model a process mathematically, we can easily optimize it by using the model as constraints. However, modeling is very difficult for most chemical processes as they include numerous units together with their correlation and we can hardly obtain parameters. Therefore, optimization that is based on the process models is, in turn, hard to perform. Especially, f3r unknown processes, such as bioprocess or microelectronics materials process, optimization using mathematical model (first principle model) is nearly impossible, as we cannot understand the inside mechanism. Consequently, we propose a few optimization method using empirical model evolutionarily instead of mathematical model. In this method, firstly, designing experiments is executed fur removing unecessary experiments. D-optimal DOE is the most developed one among DOEs. It calculates design points so as to minimize the parameters variances of empirical model. Experiments must be performed in order to see the causation between input variables and output variables as only correlation structure can be detected in historical data. And then, using data generated by experiments, empirical model, i.e. response surface is built by PLS or MLR. Now, as process model is constructed, it is used as objective function for optimization. As the optimum point is a local one. above procedures are repeated while moving to a new experiment region fur finding the global optimum point. As a result of application to the pulp digester benchmark model, kappa number that is an indication fur impurity contents decreased to very low value, 3.0394 from 29.7091. From the result, we can see that the proposed methodology has sufficient good performance fur optimization, and is also applicable to real processes.

  • PDF

A study on the application of DOE for optimization of blending oil with non-esterified biodiesel fuel at partial engine load (부분부하에서 비에스테르화 바이오디젤 5% 혼합유의 성능최적화를 위한 실험계획법 적용에 관한 연구)

  • Kim, Hee-Jung;Koh, Dae-Kwon;Yang, Ju-Ho;Koh, Sung-Wi;Kim, Yeong-Sik;Jeong, Tae-Young;Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.51-57
    • /
    • 2016
  • Non-esterified biodiesel fuel is cheaper than esterified that because of a simple manufacturing process that only consists of filtering. Applicability of this on diesel engine with electronic control system was accomplished, then optimization adopting a fractional factorial design and response surface methodology was carried out at 25% and 50% of engine load in this study. Pressure of common rail and injection timing mainly effected on responses as specific fuel oil consumption and nitrogen oxides regardless of engine load. Estimations were 310.3 g/kWh of specific fuel oil consumption and 237 ppm of nitrogen oxides at 25% load, and 233.2 g/kWh of specific fuel oil consumption and 730 ppm of nitrogen oxides at 50% load. Tests to verify these estimations were accomplished and as the results, specific fuel oil consumption was 300.4 g/kWh and NOx was 277 ppm at 25% load and 236.8 g/kWh and 573 ppm at 50% load.

Evaluation of Air-side Friction Characteristics on Design Conditions of Slit Fin and Tube Heat Exchanger (슬릿휜-관 열교환기의 설계조건에서 공기측 압력강하 산출)

  • Cho, Sung-Chul;Kim, Chang-Duk;Kim, Chang-Eob;Kwon, Jeong-Tae;Lim, Hyo-Jae
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.149-154
    • /
    • 2007
  • An experimental study on the air-side pressure drop of slit fin-tube heat exchanger has been carried out. The data reduction methodology for air-side pressure drop in the literature is not based on a consistent approach. This paper focuses on method of data reduction to obtain the air-side performance of fin-tube heat exchanger using R22 and recommends standard procedures for dry and wet surface pressure drop estimation in fin-tube heat exchanger. A comparison was made between the predictions of previously proposed empirical correlations and experimental data for the air-side pressure drop on design conditions of condenser and evaporator. Results are pre-sented as plots of friction f-factor against Reynolds number based on the fin collar outside diameter and compared with previous studies. The data covers a range of refrigerant mass fluxes of $150{\sim}250\;kg/m^2s$ with air flows at velocity ranges from 0.38 m/s to 1.6 m/s.