DOI QR코드

DOI QR Code

Synthesis of Ethyl levulinate from Chitosan Using Homogeneous Acid Catalyst

Chitosan으로부터 균일 산 촉매를 이용한 Ethyl Levulinate의 합성

  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University) ;
  • Kim, Sung-Koo (Department of Biotechnology, Pukyong National University)
  • Received : 2019.12.03
  • Accepted : 2020.02.04
  • Published : 2020.05.01

Abstract

In this study, the production of ethyl levulinate from chitosan using successive acid-catalyzed hydrolysis and esterification was investigated. To optimize and analysis the reaction factors and heir reciprocal interaction, response surface methodology was introduced. In the effect of water content in ethanol solvent, the production yield of ethyl levulinate was high at 5% water content (or 95% ethanol). As a result of optimization of reaction factors, 30.1% ethyl levulinate yield was obtained under the condition of 200 ℃, 3.19% chitosan, 0.49M sulfuric acid, 5% water content, and 58 min. Finally, the formation yield of ethyl levulinate was tended to enhance by increase of combined severity factor. This result indicated that the potential of chitosan as feedstock for production of chemicals and fuels.

본 연구에서는 갑각류의 껍질로부터 추출한 chitosan으로부터 황산을 촉매로 사용하여 가수분해 및 에스테르화 반응과 반응표면분석 실험계획법을 적용하여 화학 원료 및 연료로 사용 가능한 ethyl levulinate의 생산 가능성을 조사하였다. 반응물 중 수분함량의 영향을 조사한 결과, chitosan의 가수분해와 동시에 탈수반응과 ethyl levulinate로의 에스테르화와 반응은 5% 수분함량에서 가장 높았다. 반응표면분석 실험계획법을 이용하여 반응인자를 최적화한 결과, 200 ℃, 3.19% chitosan, 0.49M 황산 촉매, 5% 수분함량(95% 에탄올 용매), 그리고 58분의 반응조건에서 30.1%의 ethyl levulinate의 생성 수율을 얻었다. 또한, ethyl levulinate의 생성 수율은 반응의 가혹도가 증가할수록 증가하는 경향을 나타내었다. 이러한 결과는 chitosan이 화학 원료 및 연료의 생산에 사용될 수 있는 바이오매스로서의 잠재력이 있다고 판단된다.

Keywords

References

  1. Kamm, B., Gruber, P. R. and Kamm, M., Biorefineries - Industrial Processes and Products, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim(2006).
  2. Hulsey, M. J., "Shell Biorefinery: A Comprehensive Introduction," Green Energy & Environment, 3, 318-327(2018). https://doi.org/10.1016/j.gee.2018.07.007
  3. Kim, H. S., Park, M. R., Jeon, Y. J., Kim, S. K., Hong, Y.-K. and Jeong, G. T., "Valorization of Chitosan as Food Waste of Aquatic Organisms Into 5-hydroxymethylfurfural by Sulfamic Acid-catalyzed Conversion Process," Energy Technol., 6, 1747-1754(2018). https://doi.org/10.1002/ente.201700868
  4. Kim, H. S. and Jeong, G.-T., "Valorization of Galactose Into Levulinic Acid Via Acid Catalysis," Korean J. Chem. Eng., 35(11), 2232-2240(2018). https://doi.org/10.1007/s11814-018-0126-5
  5. Kim, H. S., Park, M. R., Kim, S. K. and Jeong, G. T., "Valorization of Chitosan Into Levulinic Acid by Hydrothermal Catalytic Conversion with Methanesulfonic Acid," Korean J. Chem. Eng., 35(6), 1290-1296(2018). https://doi.org/10.1007/s11814-018-0035-7
  6. Park, M. R., Kim, H. S., Kim, S. K. and Jeong, G. T., "Production of Levulinic Acid from Glucosamine Using Solid Acid Catalyst," Korean Chem. Eng. Res., 56(1), 61-65(2018). https://doi.org/10.9713/kcer.2018.56.1.61
  7. Chen, X., Yang, H. and Yan, N., "Shell Biorefinery: Dream or Reality?," Chem. Eur. J., 22, 13402-13421(2016). https://doi.org/10.1002/chem.201602389
  8. Yan, N. and Chen, X., "Sustainability: Don't Waste Seafood Waste," Nature, 524, 155-157(2015). https://doi.org/10.1038/524155a
  9. Davis, S. P., Chitosan: Manufacture, properties, and usage, Nova Science Publishers, Inc., New York(2011).
  10. Rinaudo, M., "Chitin and Chitosan: Properties and Applications," Prog. Polym. Sci., 31(7), 603-632(2006). https://doi.org/10.1016/j.progpolymsci.2006.06.001
  11. Muzzarelli, R. A. A. and Muzzarelli, C., "Chitosan Chemistry: Relevance to the Biomedical Sciences," Adv. Polym. Sci., 186, 151-209(2005). https://doi.org/10.1007/b136820
  12. Gao, X., Chen, X., Zhang, J., Guo, W., Jin, F. and Yan, N., "Transformation of Chitin and Waste Shrimp Shells Into Acetic Acid and Pyrrole," ACS Sustainable Chem. Eng., 4, 3912-3920(2016). https://doi.org/10.1021/acssuschemeng.6b00767
  13. Guan, Q., Lei, T., Wang, Z., Xu, H., Lin, L., Chen, G., Li, X. and Li, Z., "Preparation of Ethyl Levulinate from Wheat Straw Catalysed by Sulfonate Ionic Liquid," Ind. Crop. Prod., 113, 150-156 (2018). https://doi.org/10.1016/j.indcrop.2018.01.030
  14. Ahmad, E., Alam, M. I., Pant, K. K. and Haider, M. A., "Catalytic and Mechanistic Insights into the Production of Ethyl Levulinate from Biorenewable Feedstocks," Green Chem., 18, 4804-4823 (2016). https://doi.org/10.1039/C6GC01523A
  15. Xu, G., Chang, C., Fang, S. and Ma, X., "Cellulose Reactivity in Ethanol at Elevate Temperature and the Kinetics of One-pot Preparation of Ethyl Levulinate from Cellulose," Renewable Energy, 78, 583-589(2015). https://doi.org/10.1016/j.renene.2015.01.054
  16. Hao, W., Tang, X., Zeng, X., Sun, Y., Liu, S. and Lin, L., "Catalytic Conversion of Glucose to Levulinate Ester Derivative in Ethylene Glycol," BioResources, 10, 4191-4203(2015).
  17. Chang, C., Xu, G. and Jiang, X., " Production of Ethyl Levulinate by Direct Conversion of Wheat Straw in Ethanol Media," Bioresour. Technol., 121, 93-99(2012). https://doi.org/10.1016/j.biortech.2012.06.105
  18. Park, M. R., Kim, S. K. and Jeong, G. T., "Biosugar Production from Gracilaria verrucosa with Sulfamic Acid Pretreatment and Subsequent Enzymatic Hydrolysis," Biotechnol. Bioprocess Eng., 23, 302-310(2018). https://doi.org/10.1007/s12257-018-0090-2
  19. Banerji, A., Balakrishnan, M. and Kishore, V. V. N., "Low Severity Dilute-acid Hydrolysis of Sweet Sorghum Bagasse," Applied Energy, 104, 197-206(2013). https://doi.org/10.1016/j.apenergy.2012.11.012