• Title/Summary/Keyword: surface methodology

Search Result 1,979, Processing Time 0.031 seconds

Analysis of landing mission phases for robotic exploration on phobos mar's moon

  • Stio, A.;Spinolo, P.;Carrera, E.;Augello, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • Landing phase is one of the crucial and most important phases during robotic aerospace explorations. It concerns the impact of the landing module of a spacecraft on a celestial body. Risks and uncertainties of landing are mainly due to the morphology of the surface, the possible presence of rocks and other obstacles or subsidence. The present work quotes results of a computational analysis direct to investigate the stability during the landing phase of a lander on Phobos, a Mars Moon. The present study makes use of available software tools for the simulation analyses and results processing. Due to the nature of the system under consideration (i.e., large displacements and interaction between several systems), multibody simulations were performed to analyze the lander's behavior after the impact with the celestial body. The landing scenario was chosen as a result of a DOE (Design of Experiments) analysis in terms of lander velocity and position, or ground slope. In order to verify the reliability of the present multibody methodology for this particular aerospace issue, two different software tools were employed in order to emphasize two different ways to simulate the crash-box, a particular component of the system used to cushion the impact. The results show the most important frames of the simulations so as to provide a general idea about how lander behaves in its descent and some trends of the main characteristics of the system. In conclusion, the success of the approach is demonstrated by highlighting that the results (crash-box shortening trend and lander's kinetic energy) are comparable between the two tools and that the stability is ensured.

A study on analysis method for the prediction of changes in ground condition ahead of the tunnel face (터널 막장 전방의 지반 변화 예측을 위한 해석기법에 관한 연구)

  • Kim, Young-Sub;Kim, Chan-Dong;Jung, Yong-Chan;Lee, Jae-Sung;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.71-83
    • /
    • 2004
  • The purpose of this study is to present an analysis method for the prediction of the changes m ground conditions. To this end, three dimensional convergence displacements are analyzed in several ways to estimate the trend of displacement changes. Three-dimensional arching effect is occurred around the unsupported excavation surface including tunnel face when a tunnel is excavated in a stable rock mass. If the ground condition ahead of tunnel face changes or a weak zone exists, a diagnostic trend of displacement change is observed by the 3 dimensional measurement and numerical analysis. Therefore, the change of ground condition and the existence of a weak zone ahead of tunnel face can be predicted by monitoring 3-dimensional absolute displacements during excavation, and applying the methodology (the ratio of L/C, $C/C_o$, etc.) presented in this study.

  • PDF

Hauling time prediction of the muck generated by a blasting around a tunnel (터널 주변 폭발로 인해 발생된 버력의 처리시간 예측)

  • You, Kwang-Ho;Son, Myung-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.1
    • /
    • pp.33-47
    • /
    • 2013
  • When a bomb explodes near a tunnel, generated muck should be quickly moved outside for rehabilitation of the tunnel. In this study, the amount of muck generated by an explosion was estimated and a methodology was presented for the prediction of the muck hauling time. To this end, 3D-meshes were made by using SoildWorks and blasting analyses were performed by using AUTODYN. A method was suggested to calculate theoretically the amount of muck which inflows into a tunnel based on the relationship between the tunnel and the fragmentation zone obtained from the analysis results. Also, muck hauling times were predicted based on the selection of construction equipment and the results were compared and analyzed. As a result, it was convinced that the amount of muck flowing into the tunnel could be effectively calculated by classifying the relationship between a tunnel and the fragmentation zone into 4 cases and using the mensuration by parts. Also it was confirmed that the closer blasting location is to the portal and the excavation surface of a tunnel, and the more blasting location deviates from the center line of the tunnel, the lesser amount of muck occurs and thus the muck hauling time decreases as well.

Production of Biosugar from Red Macro-algae Eucheuma cottonii using Acid-hydrolysis (Eucheuma cottonii로부터 산 가수분해를 통한 biosugar 생산)

  • Lee, Sang-Bum;Jeong, Gwi-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.48-54
    • /
    • 2016
  • In this study, biosugar production by the red-algae Eucheuma cottonii was investigated using dilute sulfuric acid-catalyzed hydrolysis and data analysis by response surface methodology. This approach yielded 25.8 g/l total reducing sugar under the conditions of $160.1^{\circ}C$, 1% (v/v) sulfuric acid, and 13.1 min. The sugar concentration showed a linear inverse correlation with the combined severity factor (CSF) of the reaction conditions. CSF was calculated as $log(t{\cdot}e{xp}[(T_H-T_R)/14.75])-pH$, where t is the coupling reaction time, $T_H$ is the target temperature, and $T_R$ is the reference temperature ($100^{\circ}C$). In addition, levulinic acid production showed a linear positive correlation with CSF. E. cottonii may represent a useful feedstock for sugar production in the field of bioenergy.

Development of Fish Cake Using Salmon Oncorhynchus keta Frame Muscle (연어(Oncorhynchus keta) 프레임육을 활용한 어묵의 개발)

  • Cha, Jang Woo;Yoon, In Seong;Park, Sun Young;Kang, Sang In;Lee, Jung Suck;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.2
    • /
    • pp.147-155
    • /
    • 2020
  • This study aimed amount optimization of salmon Oncorhynchus keta mince (SM), threadfin bream Nemipterus virgatus surimi (TBS), natural tomato (NTC) and paprika colorants (PC) for preparation of fish cake using molding device and response surface methodology (RSM). The results of the RSM program for processing of fish cake indicated that the amount optimization of independent variables based on the dependent variables (Y1, gel strength; Y2, overall acceptance) for high-quality FC were 263.8 g for SM, 88.5 g for TBS, 0.11 g for NTC and 0.20 g for PC. Hunter redness and overall acceptance of fish (salmon) cake, which was prepared under the optimum amounts, were 13.82 and 8.33 score, respectively. The fish (salmon) cake was superior in sensory overall acceptance to commercial fish cake.

Characteristics of Balance and Muscle Activation responded to Dynamic Motions in Anterior-Posterior and Medial-Lateral Directions (전후방 및 내외측 방향의 동적 움직임에 따른 균형 및 근육 활성도 특성)

  • Kim, ChoongYeon;Jung, HoHyun;Lee, BumKee;Jung, Dukyoung;Chun, Kyeong Jin;Lim, Dohyung
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.212-217
    • /
    • 2013
  • Falling is one of the major public problems to the elderly, resulting in limitations of daily living activities. It can be induced by the functional loss of the balance ability and muscle strength in the elderly. It has been, however, not well investigated to suggest an effective methodology improving the balance ability and muscle strength for the prevention of the falling due to lack of information about the characteristics of the balance and muscle activations responded to the dynamic motions. The aim of the current study is, therefore, to identify the characteristics of the balance and muscle activations responded to the dynamic motions in Anterior-Posterior(AP) and Medial Lateral(ML) directions. For that, a motion capture system with eight infrared cameras, surface electromyogram system and Wii Fit system with a customized variable unstable base were used and kinematic and kinetic data obtained from the systems were analyzed for five healthy male($24.8{\pm}3.3years$, $177.4{\pm}2.0cm$, $73.9{\pm}12.9kg$, $23.5{\pm}4.0kg/m$). The results showed that the characteristics of the balance and muscle activations were differently responded to between the dynamic motions in Anterior-Posterior(AP) and Medial Lateral(ML) directions. These findings may indicate that customized dynamic motions should be applied to the training of the balance ability and muscle strength for the effective prevention of the falling. This study may be meaningful to providing basic information to establish a guideline improving effectively the balance ability and muscle strength.

Optimization of uranium biosorption in solutions by Sargassum boveanum using RSM method

  • Hashemi, Nooshin;Dabbagh, Reza;Noroozi, Mostafa;Baradaran, Sama
    • Advances in environmental research
    • /
    • v.9 no.1
    • /
    • pp.65-84
    • /
    • 2020
  • The potential use of Sargassum boveanum algae for the removal of uranium from aqueous solution has been studied by varying three independent parameters (pH, initial uranium ion concentration, S. boveanum dosage) using a central composite design (CCD) under response surface methodology (RSM). Batch mode experiments were performed in 20 experimental runs to determine the maximum metal adsorption capacity. In CCD design, the quantitative relationship between different levels of these parameters and heavy metal uptake (q) were used to work out the optimized levels of these parameters. The analysis of variance (ANOVA) of the proposed quadratic model revealed that this model was highly significant (R2 = 0.9940). The best set required 2.81 as initial pH(on the base of design of experiments method), 1.01 g/L S. boveanum and 418.92 mg/L uranium ion concentration within 180 min of contact time to show an optimum uranium uptake of 255 mg/g biomass. The biosorption process was also evaluated by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models represented that the experimental data fitted to the Langmuir isotherm model of a suitable degree and showed the maximum uptake capacity of 500 mg/g. FTIR and scanning electron microscopy were used to characterize the biosorbent and implied that the functional groups (carboxyl, sulfate, carbonyl and amine) were responsible for the biosorption of uranium from aqueous solution. In conclusion, the present study showed that S. boveanum could be a promising biosorbent for the removal of uranium pollutants from aqueous solutions.

Changes in the Quality of Crab-like Flavorants during Storage (게 향미제의 저장중 품질특성 변화)

  • Baek, Jeong-Hwa;Jeong, Eun-Jeong;Jeon, Seon-Young;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.2
    • /
    • pp.104-113
    • /
    • 2012
  • Crab-like flavorants (CFs) were made from snow crab cooker effluent (SCCE) using response surface methodology (RSM) and reaction flavoring technology (RFT). Type A CF was made from SCCE via RSM, RFT, adding starch syrup, centrifugation, and microfiltration. Type B was made from type A by adding the food additives dimethyl sulfide, ethyl valerate and fish sauce. The stability of the CFs was evaluated in terms of the color values, sensory evaluation, and flavor profiles after storage for 90 days at three different temperatures: 10, 20, and $30^{\circ}C$. The compounds, ethanol and 3-methyl-1-butanol, were considered key components of off-flavor and a decrease in dimethyl-2-vinylpyrazine affected the occurrence of off-flavor. It may be a microbial metabolite arising from contamination and lab-scale micro-filtration. At the lowest temperature ($10^{\circ}C$), the decrease in volatile compounds, such as pyrazines, was not as dramatic as at $20^{\circ}C$ and $30^{\circ}C$ and alcohol formation was prevented or delayed. Therefore, it is necessary to store CFs at < $10^{\circ}C$ with suitable sterilization to preserve volatile flavor compounds and prevent off-flavor from occurring.

Development of a Seasoning Sauce Using Hot Water Extracts from Anchovy Engraulis japonica Fish Sauce Processing By-products (멸치액젓잔사 추출물을 이용한 조미소재 개발)

  • SHIM, Kil Bo;JEONG, Yeon Gyeom;LEE, Heon Suk;JANG, Mi Soon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.3
    • /
    • pp.417-422
    • /
    • 2020
  • We developed a seasoning sauce using hot water extracts from anchovy Engraulis japonica fish sauce processing by-products. A temperature of 121℃ was maintained for 120 min and the resulting amino acid content, salinity, and pH were 183.6 mg/100 g, 6.86, and 17.4 g/100 g, respectively. Radish juice, sea tangle Saccharina japonica extract, and mushroom Lentinula edodes were added to improve the flavor. The glutamic acid content of the extract mixed with 10% sea tangle extract was 88.87 mg/100 g and the 5'-GMP (guanine 5'-monophosphate) content of the extract mixed with 10% mushroom extract was 9.67 mg/ g. This study was conducted to determine optimal processing conditions for seasoned products using response surface methodology (RSM). The optimal conditions for X1 (sea tangle extract concentration) and X2 (mushroom extract concentration) were 15.0% and 5.0%, respectively, and the predicted values of the multiple response optimal conditions were Y1 (5'-GMP: 17.36 mg/100 g) and Y2 (glutamic acid: 157.35 mg/100 g). Under the optimal conditions, the experimental values of Y1 and Y2 were 17.32 mg/g and 155.36 mg/100 g, respectively, which are similar to the predicted values. We confirmed the feasibility of developing a seasoning sauce using hot water extract from anchovy fish sauce processing by-products and additives.

Production and Characterization of Multi-Polysaccharide Degrading Enzymes from Aspergillus aculeatus BCC199 for Saccharification of Agricultural Residues

  • Suwannarangsee, Surisa;Arnthong, Jantima;Eurwilaichitr, Lily;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1427-1437
    • /
    • 2014
  • Enzymatic hydrolysis of lignocellulosic biomass into fermentable sugars is a key step in the conversion of agricultural by-products to biofuels and value-added chemicals. Utilization of a robust microorganism for on-site production of biomass-degrading enzymes has gained increasing interest as an economical approach for supplying enzymes to biorefinery processes. In this study, production of multi-polysaccharide-degrading enzymes from Aspergillus aculeatus BCC199 by solid-state fermentation was improved through the statistical design approach. Among the operational parameters, yeast extract and soybean meal as well as the nonionic surfactant Tween 20 and initial pH were found as key parameters for maximizing production of cellulolytic and hemicellulolytic enzymes. Under the optimized condition, the production of FPase, endoglucanase, ${\beta}$-glucosidase, xylanase, and ${\beta}$-xylosidase was achieved at 23, 663, 88, 1,633, and 90 units/g of dry substrate, respectively. The multi-enzyme extract was highly efficient in the saccharification of alkaline-pretreated rice straw, corn cob, and corn stover. In comparison with commercial cellulase preparations, the BCC199 enzyme mixture was able to produce remarkable yields of glucose and xylose, as it contained higher relative activities of ${\beta}$-glucosidase and core hemicellulases (xylanase and ${\beta}$-xylosidase). These results suggested that the crude enzyme extract from A. aculeatus BCC199 possesses balanced cellulolytic and xylanolytic activities required for the efficient saccharification of lignocellulosic biomass feedstocks, and supplementation of external ${\beta}$-glucosidase or xylanase was dispensable. The work thus demonstrates the high potential of A. aculeatus BCC199 as a promising producer of lignocellulose-degrading enzymes for the biomass conversion industry.