• Title/Summary/Keyword: surface grinding machining

Search Result 220, Processing Time 0.026 seconds

A Study on the Determination of Grinding Wheel Life and Dressing Time Using AE Sensor (AE센서를 이용한 숫돌의 수명판정 및 드레싱시간의 결정에 관한 연구)

  • Jun, Kil-Jae;Lee, Sang-Tae;Kim, Nam-Kyung;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.95-102
    • /
    • 2002
  • The grinding operation is an important machining process for machining of final surface. However, grinding process has inevitable troubles such as loading and glazing for grinding wheel. It is, therefore, an essential research theme to determine the wheel life and the dressing time for efficient grinding. In this study, AE signals (AEavg) generated in the grinding operation were measured and the dressing time was determined from the analysis of the AEavg value. To verify the propriety of the obtained result, the AE signals measured on the grinding and the dressing operation were compared with the grinding force signals and the dressing force which were measured at same time. From the obtained result, it was confirmed that the determination of the wheel life and the dressing tilde by the AE measurement technique proposed in this study can be practically used.

Slope Change of Surface Texturing Pattern Using Grinding (연삭을 이용한 Surface Texturing에서 패턴의 기울기 변화)

  • Jeong, Ji-Yong;Zhen, Yu;Ullah, Sahar M. Sana;Ko, TaeJo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.8-15
    • /
    • 2016
  • Most machines lose a lot of energy due to friction. Wear due to friction also reduces performance. Therefore, it is important to reduce friction on the surface to improve energy efficiency and decrease wear. Surface texturing refers to making patterns on the surface for reducing friction. There are many surface texturing methods, such as using lasers, abrasive jet machining, and so on. Recently, mechanical manufacturing methods, such as cutting and grinding, have been highlighted. Among them, the grinding method has the advantage of making patterns in large areas quickly. Therefore, it is appropriate for surface texturing on large machines. This paper is a study on the slope change of the surface texturing pattern using grinding. Therefore, we researched the slopes of the patterns corresponding to "spindle speed and feed rate" and "curvature of workpiece surface" using a mathematical model and experiment. As a result, we made a proper mathematical model concerning our research. Therefore, using the mathematical model in this paper, we could predict the slope change of the pattern according to grinding conditions.

Reducing the Non Grinding Time in Grinding Operations(2nd report) -Decision of Dressing Chance and Depth by the Direct Measurement of Grinding Wheel Surface- (연삭가공에 있어 비가공 시간 단축에 관한 연구(II))

  • KIM, Sun Ho;AHN, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.101-107
    • /
    • 1997
  • In general, grinding is one of the final machining processes which determines the surface quality of machined products. Since the ground surface is affected by the states of grains and voids on the grinding wheel surface, the wheel should be dressed before the machined surface deteriorates over a quality limit This paper describes a systematic approach to decide a proper dressing chance and an optimal dressing depth for the working grinding wheel. An eddy current sensor and a laser displacement sensor are used to measure the loading on the working wheel surface and the topography of the dressed wheel surface respec- tively. The dressing chance can be properly decided through the relational locus between the amount of handing and the machined surface roughness. An optimal dressing depth to guarantee the less wheel loss and the higher wheel surface quality is decided through the analysis of the variance of topography for the dressed wheel surface, which decreases at three different rates according to the accumulated dressing depth.

  • PDF

Study on Ultra-precision Grinding of EL-Max Material for Hot Press Molding (핫 프레스 성형용 EL-Max 소재 초정밀 연삭 가공에 관한 연구)

  • Park, Soon Sub;Ko, Myeong Jin;Kim, Geon Hee;Won, Jong Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1267-1271
    • /
    • 2012
  • Demand for optical glass device used for lighting could increase rapidly because of LED lighting market growth. The optical glass devices that have been formed by hot press molding process the desired optical performance without being subjected to mechanical processing such as curve generation or grinding. EL-Max material has been used for many engineering applications because of their high wear resistance, high compressive strength, corrosion resistant and very good dimensional stability. EL-Max is very useful for a glass lens mold especially at high temperature and pressure. The performance and reliability of optical components are strongly influenced by the surface damage of EL-Max during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified EL-Max glass lens mold. To get the required qualified surface of EL-Max, the selection of type of the diamond wheel is also important. In this paper, we report best grinding conditions of ultra-precision grinding machining. The grinding machining results of the form accuracy and surface roughness have been analyzed by using Form Talysurf and NanoScan.

Software Development for Manufacturing End Mill using CNC Tool Grinding Machine (CNC 공구연삭기를 이용한 엔드밀 제작용 software개발)

  • 고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.176-181
    • /
    • 1994
  • As tools for machining precesion componants, end mills and ball end mill are widely used. For the end mill have longer cylindrical shape comparing diameter, they are liable to deflect when machining and induce geometrical error and deterioration of surface roughness. To improve the stiffness and the sharpness of the cutting edge of end mill, a software for manufaturing end mills are developed. The progeam predicts the result of helical flute grinding and the configuration of cutting edge which is located in cylindrical surface. Furthermore to facilitate the manufacturing end mill using CNC grinding machine, the setting conditions which satisfy the geometrical requirments like tool rake angle and stiffness are obtained.

  • PDF

Geometric error Prediction and Grinding Condition Optimization using Taguchi Methods (Taguchi 기법을 이용한 형상오차 예측 및 최적조건 선정)

  • Chi Long-Zhu;Lee Sang-Jin;Kwak Jea-Seob;Ha Man-Kyung;Jun Jae-Uhk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1583-1586
    • /
    • 2005
  • Grinding process is different from other machining processes such as turning, milling and drilling because the cutting edges in a grinding wheel doesn't have uniformity and acts differently on the workpiece at each grinding. This study focus on predicting the geometric error produced during surface grinding and selecting an optimal grinding condition to reduce the geometric error. To achieve the aim, the Taguchi design of experiments was applied and the S/N ratios of each grinding was used for evaluating the results. The predicted quantities by the S/N ratios were compared with the experimental results.

  • PDF

A Study on Determinatino of Wheel Life Using Grinding Power in Cylinderical Grinding (연삭동력을 이용한 숫돌수명 판정)

  • 이상태
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.62-67
    • /
    • 2000
  • The dressing time monitoring in cylindrical grinding is very important with respect to machining efficiency. Therefore, the purpose of this paper is to determine the wheel life by monitoring behavior of grinding power for WA, 19A and GC. For this purpose , we investigated indirectly the attritious wear of grain edge, the loading of grinding wheel and the breakage of grain through the grinding power and the surface roughness under various grinding conditions. From obtained the results, the relationship between the wheel life and the average sectional chip area is examined to guide for the determination of dressing time.

  • PDF

A Study on Machining of Aspherical Surface using a cone. (원추형상을 이용한 비구면 형상가공에 관한 연구)

  • 이상민;박철우;이종항
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1348-1352
    • /
    • 2004
  • An aspherical lens in information technology has been increased in order to enhance the optical performances. There are two kinds of approaches to machine the aspherica surface is generally conducted by the diamond turning machine, precision grinding machine, and polishing machine. This technique, however, has a problem which needs an expensive and high precision machine in order to increase the surface roughness and the machining accuracy. In this paper, a machine, which is able to machine the aspherical surface, was developed to decrease the cost. Also, the machining of the aspherical surface using a cone was carried out experimentally in order to compare the experiment with the simulation. The results showed that the machining experiments of the aspherical surface by using the titled cone were in accordance with the simulation.

  • PDF

Extraction of the Surface Roughness in Grinding Operation by Acoustic Emission Signal (AE 신호에 의한 연삭가공 표면거칠기 검출)

  • Chung, Sung-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.147-153
    • /
    • 1999
  • An in-process extraction method of the ground surface roughness is a bottle-neck and essential field in conventional machining process. We define the D.A.R.F(Dimensionless Average Roughness Factor) that has a roughness characteristic of ground surface. D.A.R.F include the absolute average and the standard deviation values which are the analytic parameters of the AE(Acoustic Emission) signal generated during the grinding operation. The theoretical equation between the surface roughness and the D.A.R.F has been derived from the linear regressive analysis and verified its availability through the experimentation on the surface grinding machine.

  • PDF

A Study on Ultra Precision Machining for Aspherical Surface of Optical Parts (비구면 광학부품의 초정밀 가공에 관한 연구)

  • Lee, Ju-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.195-201
    • /
    • 2002
  • This paper deals with the precision grinding for aspherical surface of optical parts. A parallel grinding method using the spherical wheel was suggested as a new grinding method. In this method, the wheel axis is positioned at a $\pi$/4 from the Z-axis in the direction of the X-axis. An advantage of this grinding method is that the wheel used in grinding achieves its maximum area, reducing wheel wear and improving the accuracy of the ground mirror surface. In addition, a truing by the CG (curve generating) method was proposed. After truing, the shape of spherical wheel transcribed on the carbon is measured by the Form-Talysurf-120L. The error of the form in the spherical wheel which is the value ${\Delta}x$ and $R{^2}{_y}$ inferred from the measured profile data is compensated by the re-truing. Finally, in the aspherical grinding experiment, the WC of the molding die was examined by the parallel grinding method using the resin bonded diamond wheel with a grain size of #3000. A form accuracy of 0.16${\mu}m$ P-V and a surface roughness of 0.0067${\mu}m$ Ra have been resulted.