• Title/Summary/Keyword: surface degradation

Search Result 1,513, Processing Time 0.025 seconds

Assessment of Material Risk and Residual Life of CrMoV Turbine Rotor Considering High Temperature Material Degradation (고온 재질 열화도를 반영한 CrMoV 터빈로터의 재료 위험도 및 잔여수명 평가)

  • Ma, Young-Wha;Lee, Jin-Sang;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.33-41
    • /
    • 2006
  • Material degradation should be considered to assess integrity and residual life of high temperature equipments. However, the property data reflecting degradation are not sufficient for practical use. In this study measuring properties for 1Cr-1Mo-0.25V forging steel generally used for turbine rotor was carried out. Degradation was simulated by isothermal ageing. heat treatment and variation of microstructure was observed. Mechanical properties such as tensile strength, impact energy, hardness and fracture toughness were measured. Assuming a semi-elliptical surface crack at the bore hole in a turbine rotor, material risk was estimated by using the aged material property data obtained in this study. Safety margin was decreased and life of the rotor was exhausted. This procedure can be used in assessing the residual life of a turbine rotor due to material degradation.

A Study for Degradation Mechanism of Plastic Materials (플라스틱 소재의 탈변색 열화 메커니즘 분석)

  • Youn, Hyung-Joon;Jung, Won-Wook;Byun, Doo-Jin;Choi, Gi-Dae
    • Journal of Applied Reliability
    • /
    • v.7 no.4
    • /
    • pp.173-181
    • /
    • 2007
  • Out door exposure to daylight and weather climate conditions can cause adverse effect on the properties of automotive plastic materials. The effects of sunlight exposure, especially ultra violet (UV) radiation, can break down the chemical bonds in a polymeric material. This degradation process is called photo-degradation and ultimately leads to color changes, cracking, chalking, the loss of physical properties and deterioration of other properties. To explore the effect of sunlight exposure on the automotive materials, this study investigated photo-oxidation degree and surface property change of molding parts by analytical methods. For the further study, accelerated weathering test methods are proposed, which can correlate with out door weathering, to predict long term performance of automotive plastic materials.

  • PDF

Failure analysis on the phenomenon of water condensing of automotive head lamp assembly (자동차용 head lamp의 수밀원인 분석)

  • Cho, Young-Jin;Jeon, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1349-1354
    • /
    • 2008
  • In this study, we try to find the root cause of water condensing failures in a headlamp using chemical and mechanical analysis. Through the surface inspection by OM, SEM and CT, it was found that water infiltrate into the headlamp through hotmelt adhesive debonding part caused by adhesion force degradation and poor quality. IR spectra shows that adhesion force degradation are characterized by increase of some functional group(1742, 1710, 1649, 1016). Through the ESPI measurement, it is turned out that bonding structural change by thermal expansion and degradation of adhesive can be the cause of void generation. So it is recommended that cooling passage and the bonding part should be redesigned to give a guarantee of less thermal stress and high adhesion quality.

  • PDF

A Study on the Performance Change of Insulation Sheath Due to Accelerated Degradation of IV and HIV Insulated Wire (IV 및 HIV 절연전선의 가속열화에 따른 절연피복의 성능변화에 관한 연구)

  • Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.114-123
    • /
    • 2019
  • The paper relates to a study on the changes in performance of insulation sheath resulting from accelerated degradation of IV and HIV insulated wire. To assume insulation degradation of IV and HIV insulated wire, accelerated life tests using Arrhenius equation were conducted among accelerated life test models, and experimental samples of 0 year, 10 years, 20 years, 30 years, and 40 years in equivalent life were produced. Whereas the maximum tensile load were increased as accelerated degradation of IV and HIV insulated wire progressed, elongation percentage, rupture time, and flexibility of insulated wires were found to be gradually reduced. According to the additional surface analysis results for the insulated wires per equivalent life using a scanning electron microscope, mechanical properties of the insulator were observed to be reduced as insulation degradation resulting from aging progressed since phenomena such as formation of crystalline structures and perforation, etc. occurred on the sample surface with progression of accelerated degradation. Consequently, institutional replacement of insulated wires and preparation of repair times considering performance degradation of the insulator installed inside buildings are considered necessary in order to prevent in advance the risks of electrical fire resulting from degradation in insulation performance.

Development of a Durable Startup Procedure for PEMFCs (고분자전해질 연료전지 내구성 향상을 위한 시동 기술 개발에 관한 연구)

  • Kim, Jae-Hong;Jo, Yoo-Yeon;Jang, Jong-Hyun;Kim, Hyung-Juhn;Lim, Tae-Hoon;Oh, In-Hwan;Cho, Eun-Ae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.288-294
    • /
    • 2009
  • Various polymer electrolyte membrane fuel cell (PEMFC) startup procedures were tested to explore possible techniques for reducing performance decay and improving durability during repeated startup-shutdown cycles. The effects of applying a dummy load, which prevents cell reversal by consuming the air at the cathode, on the degradation of a membrane electrode assembly (MEA) were investigated via single cell experiments. The electrochemical results showed that application of a dummy load during the startup procedure significantly reduced the performance decay, the decrease in the electrochemically active surface area (EAS), and the increase in the charge transfer resistance ($R_{ct}$), which resulted in a dramatic improvement in durability. After 1200 startup-shutdown cycles, post-mortem analyses were carried out to investigate the degradation mechanisms via various physicochemical methods including FESEM, an on-line $CO_2$ analysis, EPMA, XRD, FETEM, SAED, FTIR. After 1200 startup-shutdown cycles, severe Pt particle sintering/agglomeration/dissolution and carbon corrosion were observed at the cathode catalyst layer when starting up a PEMFC without a dummy load, which significantly contributed to a loss of Pt surface area, and thus to cell performance degradation. However, applying a dummy load during the startup procedure remarkably mitigated such severe degradations, and should be used to increase the durability of MEAs in PEMFCs. Our results suggest that starting up PEMFCs while applying a dummy load is an effective method for mitigating performance degradation caused by reverse current under a repetition of unprotected startup cycles.

  • PDF

An Analysis on the Degradation of Elevation Angle Accuracy Due to the Multi-Path Effect Using a Phased Array Antenna and the Beam Pattern Optimization to Minimize Its Degradation (위상배열 안테나를 활용한 다중 경로 효과에 의한 고각 정확도 열화 분석 및 열화 최소화를 위한 빔 패턴 최적화)

  • Kim, Young-Wan;Lee, JaeMin;Chae, Heeduck;Jin, Hyung-suk;Park, Jongkuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.12
    • /
    • pp.1036-1043
    • /
    • 2016
  • In this paper, an analysis about the elevation angle accuracy degradation of an APAR(Airport Precision Approach Radar) due to the multi-path effect using a phased array antenna was performed. An APAR installed around a runway of airport will be continuously affected in a runway surface of the fixed environment. In this paper, an analysis about the elevation angle accuracy degradation of APAR due to the multi-path effect of runway surface was conducted through a calculation of monopluse slope and sum/difference beam pattern analysis of array antenna. Also, a difference pattern for monopulse to minimize this degradation was optimized in an appropriate configuration to improve a elevation angle accuracy. Finally, a degree of improvement of elevation angle accuracy was confirmed by calculating a monopulse slope including the ground reflection after applying optimized difference patterns of array antenna.

Drug Release Behavior and Degradability of Microspheres Prepared using Water-Soluble Chitosan (수용성 키토산으로 제조한 미세구의 분해성과 약물 방출 거동)

  • 장미경;최창용;김원석;정영일;나재운
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.291-297
    • /
    • 2004
  • Water-soluble chitosan micro spheres were prepared by emulsification of chitosan solution in mineral oil followed by cross linking reaction with different amount of the cross linking agent (glutraraldehyde), different chitosan concentration. Then, the physicochemical properties such as morphological change by degradation, drug loading efficiency, and drug release profiles were investigated with the drug loaded water-soluble chitosan microspheres. Norfloxacin loaded water-soluble chitosan micro spheres showed excellent drug entrapping capacities without burst release caused by surface bound drug. The absence of the surface bound drug also confirmed by X-ray diffraction study. Degradation and drug release studies showed that the amount of the crosslinking agent played a crucial role for drug loading, release and degradation. The water-soluble chitosan micro spheres showed more sustained drug release profiles with slower degradation and larger particle size by increasing crosslinking agent.

Degradation Behavior of Poly[(R)-3-hydroxybutyrate] by Using Single Crystals and Monolayers as Model Systems (단결정과 단분자막을 모델 시스템으로 한 Poly[(R)-3-hydroxybutyrate]의 분해거동)

  • Kim, Seong-Soo;Lee, Won-Ki;Ahn, Yong-Sik
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.54-58
    • /
    • 2005
  • The hydrolytic behavior of microbial poly[(R)-3-hydroxybutyrate]](P(3HB)) has been studied by using two model systems, Langmuir monolayer and solution-grown single crystals (SCs), for elucidating the mechanism for both alkaline and enzymatic degradations. An initial degradation of SCs of P(3HB) leads to breakup lamellae parallel to their short axis (b-axis). Similarly, ridge formation on the lamellar surface appears along the b-axis at lower quenching temperature than melting temperature. Both results support that the lamellar crystals contain less-ordered and more thermally sensitive regions along the b-axis. Although the enzymatic hydrolysis of P(3HB) monolayers was similar to its alkaline one, the enzymatic degradation of P(3HB) monolayers occurred at higher constant surface pressure than the alkaline degradation. This behavior might be attributed to the size of enzymes which is much larger than that of alkaline ions; that is, the enzymes need larger contact area with monolayers to be activated.

Assessment of Material Degradation of High-Temperature Components for Process Plant by Grain Boundary Etching Method (입계부식법에 의한 공정설비 고온요소의 재질열화 평가)

  • Han Sang In;Yoon Kee Bong;Kim Ji Yoon;Chung Se Hi
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.74-82
    • /
    • 1998
  • The grain boundary etching method as a technique for assessing degradation of structural materials used at elevated temperature has received much attention since it is simple, inexpensive and easy to apply to real plant components. In this study, the technique is applied to some aged petroleum and chemical plant components such as reactors and drums. As a degradation parameter, intersection number ratio ($N_i/N_o$), is employed. The intersection number ratio ($N_i/N_o$) is defined as the ratio of intersection number ($N_i$) obtained from 5-minute picric acid etched surface to the number ($N_o$) obtained from Nital etched surface. In order to study degradation level, several relationships were measured such as the correlation between shift in ductile brittle transition temperature, $({\Delta}DBTT)_{sp}$ and intersection number ratio, ($N_i/N_o$) and the correlation between the measured ($N_i/N_o$) values and Larson-Miller Parameter values.

  • PDF

Determination of Operational Parameters for TCE Degradation in Photocatalytic Oxidative Reactors (TCE의 분해를 위한 광촉매 산화반응조의 운전인자 도출에 관한 연구)

  • Hur, Joon-Moo;Cheon, Seung-Yul;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.124-129
    • /
    • 2003
  • The objectives of this study are to manufacture an efficient $TiO_2$, photocatalyst and to delineate optimum operational parameters for TCE (trichloroethylene) degradation in a photocatalytic oxidative reactor. The $TiO_2$ photocatalyst irradiated by 365 nm UV light is expected to increase degradation of TCE in solution by a series of photocatalytic oxidations in the reactor. A new membrane $TiO_2$ photocatalyst wns eventually developed by coating a mixture of Davan-C(0.24 wt%) and PVA(0.16 wt%) on the surface of slips using the slip-casting method. Results show that increase in the number of coating of $TiO_2$ sol on surface of photocatalysts and in the surface thickness improved the endurance and photocatalysts, but these physical modifications caused significant decrease in the overall degradation efficiency of TCE. Pre-aeration or recirculation of the influents to the reactors containing TCE increased degradation efficiency of TCE. The optimum operational conditions far the surface area of photocatalysts and UV light intensity appeared to be $1.47\;mL/cm^2$ and $225\;W/cm^2{\times}100$, respectively, in the reactor. Based on the overall experimental results, the photocatalytic oxidation of TCE with the new membrane $TiO_2$ photocatalyst is found to be very effective under the operational conditions delineated in this study.