• Title/Summary/Keyword: surface deflection

Search Result 418, Processing Time 0.029 seconds

Improvement of the Accuracy in Cornering Cut Using End Mill (엔드밀의 코너 가공시 가공 정밀도 향상에 관한 연구)

  • Kim, Yong-Hyeon;Go, Seong-Rim
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.399-407
    • /
    • 2001
  • The Surface, generated by end milling operation, is deteriorated by tool runout, vibration, friction, tool deflection, etc. Especially in cornering cut, surface accuracy is usually determined by varying cutting forces, which causes tool deflections. Cutting conditions like feed rate is usually kept constant during machining a part, which causes dimensional error in severe cutting. Cornering cut is a typical example of deterioration of surface accuracy when constant feed rate is applied. Therefore it becomes important to develop NC post processor module to determine optimal cutting conditions in various cutting situations. In this paper, cutting force is predicted in cornering cut with flat end mill and feed rate is determined by constraining constantly resultant force. Also some control characteristics of CNC machining center are evaluated.

Stress Measurement of films using surface micromachined test structures (표면 미세 가공된 구조체를 이용한 박막의 응력 측정)

  • 이창승;정회환;노광수;이종현;유형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.721-725
    • /
    • 1996
  • The microfabricated test structures were used in order to evaluate the stress characteristics in films. The test structures were fabricated using surface micromachining technique, including HF vapor phase etching as an effective release method. The fabricated structures were micro strain gauge, cantilever-type vernier gauge and bridge for stress measurement, and cantilever for stress gradient measurement. The strain was measures by observing the deformation of the structures occurred after release etching and the amount of deformation can be detected by micro vernier gauge, which has gauge resolution of 0.2${\mu}{\textrm}{m}$. The detection principles and the degree of precision for the measured strain were also discussed. The characteristics of residual stress in LPCVD polysilicon films were studied using these test structures. The stress gradient due to the stress variation through the film thickness was calculated by measuring the deflection at the cantilever free end.

  • PDF

Improvement of the Accuracy in Machining Deep Pocket by Up Milling (상향절삭에 의한 깊은 홈 가공시 정밀도 향상에 대한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.220-228
    • /
    • 1999
  • The machining accuracy has been improved with the development of NC machine tools and cutting tools. However, it is difficult to obtain a high degree of accuracy when machining deep pocket with long end mill, since machining accuracy is mainly dependant on the stiffness of the cutting tool. To improve surface accuracy in machining deep pocket using end mill, the performance by down cut and up cut is compared theoretically and experimentally. To verify usefulness of up milling, various experiments were carried out. As a result, it is found that up milling produce more accurate surface than down milling in machining deep pocket. For effective application of up milling, various values in helix angle, number of teeth, radial depth of cut and axial depth of cut are applied in experiment.

  • PDF

Fabrication and Experiment of Micromirror with Aluminum Pin-joint (알루미늄 핀-조인트를 사용한 마이크로 미러의 제작과 측정)

  • Ji, Chang-Hyeon;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.487-494
    • /
    • 2000
  • This paper describes the design, fabrication and experiments of surface-micromachined aluminum micromirror array with hidden pin-joints. Instead of the conventional elastic spring components as connection between mirror plate and supporting structure, we used pin-joint composed of pin and staples to support the mirror plate. The placement of pin-joint under the mirror plate makes large active surface area possible. These flexureless micromirrors are driven by electrostatic force. As the mirror plate has discrete deflection angles, the device can be ap;lied to adaptive optics and digitally-operating optical applications. Four-level metal structural layers and semi-cured photoresist sacrificial layers were used in the fabrication process and sacrificial layers were removed by oxygen plasma ashing. Static characteristics of fabricated samples were measured and compared with modeling results.

  • PDF

Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force

  • Lee, Sangmin;Hong, Jung-Wuk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-101
    • /
    • 2020
  • The optimal parameters for the fluid-structure interaction analysis using the Smoothed Particle Hydrodynamics (SPH) for fluids and finite elements for structures, respectively, are explored, and the effectiveness of the simulations with those parameters is validated by solving several open surface fluid problems. For the optimization of the Equation of State (EOS) and the simulation parameters such as the time step, initial particle spacing, and smoothing length factor, a dam-break problem and deflection of an elastic plate is selected, and the least squares analysis is performed on the simulation results. With the optimal values of the pivotal parameters, the accuracy of the simulation is validated by calculating the exerted force on a moving solid column in the open surface fluid. Overall, the SPH-FEM coupled simulation is very effective to calculate the fluid-structure interaction. However, the relevant parameters should be carefully selected to obtain accurate results.

Reliability Analysis of Monopile for a Offshore Wind Turbine Using Response Surface Method (응답면 기법을 이용한 해상풍력용 모노파일의 신뢰성 해석)

  • Yoon, Gil Lim;Kim, Kwang Jin;Kim, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2401-2409
    • /
    • 2013
  • Reliability analysis with response surface method (RSM) was peformed for a offshore wind turbine (OWT) monopile, which is one of mostly used foundations under 25m seawater depth in the world. The behaviors of a real OWT monopile installed into sandy soils subjected to offshore environmental loads such as wind and wave were analysed using reliability design program (HSRBD) developed in KIOST. Sensitivity analysis of design variables for a OWT monopile with 6m diameter showed that the larger in pile diameter the smaller in probability of failure ($P_f$) of a horizontal deflection and a rotational angle at a pile top, but at a greater than 7m of pile diameter, the reduction rate of $P_f$ was almost constant. It is a necessary that appropriate local design criteria should be designated as soon as possible because there were significant differences on horizontal deflections; $P_f$ was 60% at a minimum criteria 15mm deflection, however, 1.5% $P_f$ when 60mm deflection using 1% of pile diameter from local design criterion standard. Finally, friction angle of sand among many design variables was found most influential design factor in OWT monopile design, and a sensitivity analysis is found an important process to understand which design variables can mostly reduce $P_f$ with a optimum design for maintaining OWT stability.

Damage Assessment of Adjacent Structures due to Tunnel Excavation in Urban Areas (II) - Focused on the Variations of Building Stiffness Ratio - (도심지 터널 굴착에 따른 인접구조물의 손상평가에 관한 연구 (II) - 지상 건물의 강성비 변화를 중심으로 -)

  • 김창용;배규진;문현구;박치현;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.81-98
    • /
    • 1999
  • The influence of tunnelling on buildings has become an important issue in urban areas. The problem is an interactive one: not only do tunnelling settlements affect existing structures, but existing structures affect tunnel-induced soil movements. In order to examine the constraint of surface settlement and the degradation of building damage parameters, 3-dimensional elasto-plastic finite element analyses are peformed. Also, in this paper, the results of the parametric studies for the variations of the damage parameters due to the ground movements are presented by utilizing 2-dimensional elasto-plastic finite element models, totally 162 models. The width of a structure, its bending and axial stiffness, its position relative to the tunnel and the depth of tunnel are considered. The interaction is shown by reference to commonly-used building damage parameters, namely angular distortion, deflection ratio, maximum building settlements, maximum differential settlements and horizontal strain. By introducing relative stiffness parameters which combine the bending and axial stiffness of the structure with its width and stiffness of soil, design curves are established. These give a guide as to the likely modification of the greenfield settlement trough caused by a surface structure. They can be used to give initial estimates of likely building damage.

  • PDF

Feedrate Optimization using CL Surface (공구경로 곡면을 이용한 이송속도 최적화)

  • 김수진;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.547-552
    • /
    • 2003
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR (material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over 300m. so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL(cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants wire applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to speaker mold machining. The finishing time was reduced to 12.6%. tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were removed.

  • PDF

The Variation of Fracture Strength and Modes in $ZrO_2/NiTi$ Bond by Changing Reaction Layer ($ZrO_2/NiTi$ 접합부 반응조직에 따른 꺽임강도 및 파괴거동 변화)

  • 김영정
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.10
    • /
    • pp.1197-1201
    • /
    • 1994
  • The fracture strength and fracture modes were studied in 3Y-TZP/NiNi bonding which change their interfacial structure with bonding condition. Average 4-point bending strength of 200 MPa to 400 MPa were achieved. The formation of Ti-oxide phase at the interface critically influenced the bonding strength and fracture mode. The fracture surface of Ti-oxide free interface contained multiphase in some case including ZrO2. From the result it was confirmed that in order to maximize the bonding strength crack deflection from interface to ceramic was required.

  • PDF

Case Analysis of Abutment Displacement and Pavement settlement (교대변위 및 도로침하에 대한 사례분석)

  • 박찬호;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.03a
    • /
    • pp.19-30
    • /
    • 1994
  • This paper reports a case study of aboutment displacement and pavement settlement observed at the construction site for highway bridges. The emphasis was on quantifying the horizontal deflections of about and pavement settlement on the backfill surface. It is shown that in soft clay, bridge aboutments on pile foundations are subjected to lateral earth pressures due to lateral soil movement. Based on the results analyzed, the earth pressure was predicted by deflection shape of piles based on the results of a numerical analysis and an analytical study. Also, the long term settlement of soil below pavement was estimated.

  • PDF