• Title/Summary/Keyword: surface damage

Search Result 2,336, Processing Time 0.024 seconds

Analysis of Settlement Characteristics of Block Pavement in Port Through Field Tests (현장시험을 통한 항만 구역 내 블록 포장의 침하 특성 분석)

  • Ha, Yong-Soo;Kim, Yun-Tae;Oh, Myounghak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.203-214
    • /
    • 2024
  • Ports often suffer pavement damage due to soft ground and heavy equipment operations, leading to issues such as differential settlement and cracks. In this study, we developed port concrete blocks and applied them to a port in two configurations to figure out settlement characteristics. Falling weight deflectometer (FWD) tests on asphalt pavement and block pavements were conducted to figure out deflection and bearing capacity. The block pavement with the cement treated base showed improved bearing capacity with the port operation since lower settlements were detected than asphalt pavement. In the cement treated base, the relative deflection ratio to asphalt concrete pavement was less than 1, indicating enhanced bearing capacity. LiDAR measurements identified multiple settlements in the crushed-stone base due to surface loads after construction. Both relative deflection ratio and LiDAR measurements suggested that block pavement can be widely applied to various port sites with its applicability and bearing capacity of cement-treated base.

Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities (비점오염 저감시설에 적용되는 여재의 흡착 및 탈착 능력 평가)

  • Moon, Soyeon;Hong, Jungsun;Choi, Jiyeon;Yu, Gigyung;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.228-236
    • /
    • 2015
  • Urbanization causes many environmental, hydrological and ecological problems such as distortion of the natural water circulation system, increase in nonpoint source pollutants in stormwater runoff, degradation of surface water quality, and damage to the ecosystem. Due to the increase in impervious surface by urbanization, developed countries apply low impact development (LID) techniques as important alternatives to reduce the impacts of urbanization. In Korea, LID techniques were employed since 2012 in order to manage nonpoint source pollutants. LID technology is a technique for removing pollutants using a variety of physical, chemical and biological mechanisms in plants, microorganisms and filter media with the reduced effluence of stormwater runoff by mimicking natural water circulation system. These LID facilities are used in a variety of filter media, but an assessment has not been carried out for the comprehensive comparison evaluation of adsorption and desorption characteristics for the pollutant removal capacity. Therefore, this study was conducted to analyze the adsorption and desorption characteristics of various filter media used in the LID facilities such as sand, gravel, bioceramic, wood chips and bottom ash etc. in reducing heavy metals(Pb, Cu). In this study, the adsorption affinity for Pb in all filter media was higher than Cu. Pseudo second order equation and Langmuir-3 isotherm are more applicable in the adsorption kinetic model and adsorption isotherm model, respectively. As a result of the desorption experiment, the filter media does not exceed KSLT which is the hazardous substance leaching limit, showing the capability of the filter media in LID. The bioceramic and woodchip as filter medias were evaluated and exhibited excellent adsorption capacity for Pb.

A Feasibility Study on GMC (Geo-Multicell-Composite) of the Leachate Collection System in Landfill (폐기물 매립시설의 배수층 및 보호층으로서의 Geo-Multicell-Composite(GMC)의 적합성에 관한 연구)

  • Jung, Sung-Hoon;Oh, Seungjin;Oh, Minah;Kim, Joonha;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.67-76
    • /
    • 2013
  • Landfill require special care due to the dangers of nearby surface water and underground water pollution caused by leakage of leachate. The leachate does not leak due to the installation of the geomembrane but sharp wastes or landfill equipment can damage the geomembrane and therefore a means of protecting the geomembrane is required. In Korea, in accordance with the waste control act being modified in 1999, protecting the geosynthetics liner on top of the slope of landfill and installing a drainage layer to fluently drain leachate became mandatory, and technologies are being researched to both protect the geomembrane and quickly drain leachate simultaneously. Therefore, this research has its purpose in studying the drainage functions of leachate and protection functions of the geomembrane in order to examine the application possibilities of Geo-Multicell-Composite (GMC) as a Leachate Collection Removal and Protection System (LCRPs) at the slope on top of the geomembrane of landfill by observing methods of inserting filler with high-quality water permeability at the drainage net. GMC's horizontal permeability coefficient is $8.0{\times}10^{-4}m^2/s$ to legal standards satisfeid. Also crash gravel used as filler respected by vertical permeability is 5.0 cm/s, embroidering puncture strength 140.2 kgf. A result of storm drain using artificial rain in GMC model facility, maxinum flow rate of 1,120 L/hr even spray without surface runoff was about 92~97% penetration. Further study, instead of crash gravel used as a filler, such as using recycled aggregate utilization increases and the resulting construction cost is expected to savings.

Soil Characteristics of the Saprolite Piled Upland Fields at Highland in Gangwon Province (강원도 고랭지의 석비레 성토지 토양 특성)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Yang, Jae-E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.66-73
    • /
    • 2004
  • As one of the typical farming practices in the sloped upland in Pyeongchang and Hongcheon area, application of piling with coarse saprolite materials has been practiced by farmers for several reasons such as reduction of damage by monocropping, better development of plant roots, and better drainage. However, adverse effect on application of coarse saprolite soil materials to environmental aspects should not be ignored. Therefore, this research was conducted to evaluate the physicochemical properties of coarse saprolite materials in upland fields in Pyeongchang area. According to particle size distribution of coarse saprolite materials, averaged gravel contents for Pyeongchang and Hongcheon county were 16.7 and 25.3%, respectively. There was no significant difference in gravel contents by soil depth, and CV values for each particle size ranged from 20 to 40%, which implied that application of coarse material with similar properties. When we compared CEC values of dressed soil with or without considering gravel content, CEC values decreased as increasing gravel contents. The penetration resistances were 0.04-7.48 MPa at the 0 to 10 cm surface soil, and 0.10 to 8.80 MPa at the depth below 11 cm. The bulk density of the soil was $1.15g\;cm^{-3}$ at the surface soil and 1.29 to $1.35g\;cm^{-3}$ at the soil depth below 10 cm. The organic matter content, cation exchange capacity, and avaliable $P_2O_5$ concentrations of soil in upland where piling with saprolite materials of Pyeongchang area applied were $12.4g\;kg^{-1}$, $7.1cmol_c\;kg^{-1}$, and $526mg\;kg^{-1}$, respectively. Cation exchange capacity was lower than that of averaged Korean upland soil, while available $P_2O_5$ concentration was relatively higher than that of averaged Korean upland, which indicated high input of various fertilizers.

Aluminum-induced Root Growth Inhibition and Impaired Plasma Membrane $H^+-flux$ in Mung Bean (알루미늄에 의한 녹두 뿌리의 생장 억제와 원형질막 $H^+-flux$의 손상)

  • Ahn, Sung-Ju;Kim, Yu-Sun;Park, Won;Ku, Yang-Gyu;Min, Kyung-Soo;Whang, Tei-Ik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.213-219
    • /
    • 2007
  • It has been well established that aluminum (Al) inhibits root tip growth rapidly in acid soil. We report the correlation between Al induced growth inhibition and impaired $H^+-flux$ in mung bean (Vigna radiate L. cv. Kumsung). The root growth inhibition was dependent on Al concentration (0, 10, 25, 50, $100{\mu}M$) and exposure time (12 and 24 h). Using Hematoxylin staining, it was observed that the root damage was occurred preferentially in regions with high Al accumulation. Using the pH indicator, it was shown that the surface pH of root tip was strongly alkalized in the control whereas changed only slightly in the $50{\mu}M$ Al-treated root. The $H^+-ATPase$ activity of plasma membrane vesicles was inhibited by 56% in the Al-treated roots compared to control root. Decrease in the amount of the plasma membrane $H^+-ATPase$ (100 kDa) translation in the plant roots under Al stress was demonstrated by Western blot analysis. These results indicate that the dynamics of $H^+-flux$ across the root tip play an important role in root growth under Al stress.

Effects of 166Holmium and 166Holmium-chitosan Complex(166Ho-CHICO) on Normal Brain of Rats (홀뮴 및 홀뮴-키토산 복합체가 정상 백서 뇌에 미치는 효과에 대한 연구)

  • Sun, Jing He;Joh, Chul W;Ahn, Young Hwan;Park, Chan Hee;Shim, Chull;Park, Kyung Bae;Cho, Kyung Gi
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.10
    • /
    • pp.1309-1315
    • /
    • 2000
  • Objectives : We performed an in vivo experiment to investigate the effect of $^{166}Holmium$ and $^{166}Holmium$-chitosan complex($^{166}Ho$-CHICO) on the normal brain of rats and to determine the sublethal dose of $^{166}Ho$-CHICO. Materials and Methods : $^{166}Ho$ is a beta and gamma ray emitter. $^{166}Ho$-CHICO is a novel radio-pharmaceutical complex with chitosan to facilitate the transport of $^{166}Ho$ obtained from Korea Atomic Energy Research Center(Taejon, Korea). It is in acidic form and becomes gel state at alkaline pH. One hundred and seventy consecutive rats were divided into four groups : $^{166}Ho$ treated(n=50), $^{166}Ho$-CHICO treated(n=57), saline treated(n=5) and chitosan treated(n=5) groups. $^{166}Ho$ and $^{166}Ho$-CHICO were injected into the rat brain stereotactically with various doses of 0.1mCi/$20{\mu}l$, 0.2mCi/$20{\mu}l$, 0.3mCi/$20{\mu}l$, and 0.4mCi/$20{\mu}l$ using an automated microinjector. Nuclear imaging, histopathological and hematological studies were performed in 10 rats in each group at 1 day, 3days, 7 days, 1 month and 3 months after the injections. Results : An infiltration of inflammatory cells and necrotic changes were noted in $^{166}Ho$ treated group at 1 week after the injection. A wedge-shaped tissue defect due to necrosis, lined with infiltrated glial cells in $^{166}Ho$ treated group and a cystic defect lined with reactive astroglial cells in $^{166}Holmium$-CHICO treated group at 3 months after the injection were observed. $^{166}Ho$ alone without chitosan leaked out and caused necrotic lesion on the cerebral surface but $^{166}Holmium$-CHICO treated group did not show this feature. As the dose of $^{166}Ho$ increased, the mortality rates were also increased. The mortality rate of the $^{166}Holmium$-CHICO group was higher than the $^{166}Ho$ treated group at a dose of 0.4mCi/$20{\mu}l$/300g. There was no detectable radioactivity due to the leakage or extravasation from the injected site of the brain on the scintigraphy performed at 1 hour, 24 hours and 48 hours after the injection. There was also no detectable activity of $^{166}Holmium$-CHICO in other organs including spleen, liver and kidney. Conclusions : $^{166}Ho$-CHICO did not leak out to the critical cortical surface of the brain from the injection site and induced radiation changes of the parenchyma around the injection site without cortical damage. The sublethal dose of $^{166}Ho$-CHICO for the normal brain in rats was determined to be 0.2mCi/$20{\mu}l$/300g.

  • PDF

Preparation of EVA/Intumescent/Nano-Clay Composite with Flame Retardant Properties and Cross Laminated Timber (CLT) Application Technology (난연특성을 가지는 EVA/Intumescent/나노클레이 복합재료 제조 및 교호집성재(Cross Laminated Timber) 적용 기술)

  • Choi, Yo-Seok;Park, Ji-Won;Lee, Jung-Hun;Shin, Jae-Ho;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Recently, the importance of flame retardation treatment technology has been emphasized due to the increase in urban fire accidents and fire damage incidents caused by building exterior materials. Particularly, in the utilization of wood-based building materials, the flame retarding treatment technology is more importantly evaluated. An Intumescent system is one of the non-halogen flame retardant treatment technologies and is a system that realizes flame retardancy through foaming and carbonization layer formation. To apply the Intumescent system, composite material was prepared by using Ethylene vinyl acetate (EVA) as a matrix. To enhance the flame retardant properties of the Intumescent system, a nano-clay was applied together. Composite materials with Intumescent system and nano - clay technology were processed into sheet - like test specimens, and then a new structure of cross laminated timber with improved flame retardant properties was fabricated. In the evaluation of combustion characteristics of composite materials using Intumescent system, it was confirmed that the maximum heat emission was reduced efficiently. Depending on the structure attached to the surface, the CLT had two stages of combustion. Also, it was confirmed that the maximum calorific value decreased significantly during the deep burning process. These characteristics are expected to have a delayed combustion diffusion effect in the combustion process of CLT. In order to improve the performance, the flame retardation treatment technique for the surface veneer and the optimization technique of the application of the composite material are required. It is expected that it will be possible to develop a CLT structure with improved fire characteristics.

Algal Waterbloom on Rice Seedling-Bed and Nuisance Phytoplanktonic Green Algae in Rice Field (수도재배기간중(水稻栽培期間中) 묘대(苗垈)의 괴불원인조류(原因藻類) 및 본답(本畓)의 부유조류(浮遊藻類)에 관(關)한 연구(硏究))

  • Lee, Sang-Kyu;Kim, Seung-Hwan;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.1
    • /
    • pp.70-75
    • /
    • 1986
  • The population and kinds of algae causing the waterbloom on the rice seedling bed and the damage of young rice plant by the nuisance green phytoplanktonic algae in rice field were studied to find out the efficiency of fertilizers and the effect of methods of fertilizers application in the rice field, laboratory, pot and green house. pot and green house. The results obtained were summarized as follows; 1. In the rice seedling bed, the kinds of algae causing waterblooms were identified mainly photosynthetic bluegreen algae as the Anabaena, Ulothrix and Oscillatoria spp. in reclaimed saline soil. Micromonospora, Oscillatoria, and Chlamydomonas spp. were habitated mainly in plain. Whereas, Spyrogyra, Oscillatoria and Navicula spp. were identified mainly in mauntainous area. 2. In the rice field, the nuisance phytoplanktonic green algae were identified mainly Scenedesmus, Chlamidospora, and Micromonospora spp. in Gimjae plain, in Namweon mountainous area and Gangjin costal plain, respectively. 3. The algal biomass has been havily habitated in which rice field were constituted with high pH value and high concentration of $NH^+_4-N$ and $NO^-_3-N$ in surface water and in soil with the optimum temperature for the algal growth ($22-30^{\circ}C$). 4. In the laboratory experiment, maximum algal biomass were obtained at levels of 80 ppm for the nitrogen and 20 ppm for the phosphorus. And were obtained of the levels of 40 ppm in the case of joint application of N and $P_2O_5$. 5. From the pot experiment, compare of the control plot, an addition of nitrogen alone or nitrogen+phosphorus enhanced algal biomass while the phosphorus alone did not. 6. Surface application of fertilizer was remarkably increased of algal biomass than did the whole layer or deep layer application.

  • PDF

Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud (Li2O-LiCl 용융염에서의 다공성 양극 슈라우드를 이용한1kg 우라늄산화물의 전해환원)

  • Choi, Eun-Young;Lee, Jeong;Jeon, Min Ku;Lee, Sang-Kwon;Kim, Sung-Wook;Jeon, Sang-Chae;Lee, Ju Ho;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.121-129
    • /
    • 2015
  • The platinum anode for the electrolytic reduction process is generally surrounded by a nonporous ceramic shroud with an open bottom to offer a path for $O_2$ gas produced on the anode surface and prevent the corrosion of the electrolytic reducer. However, the $O^{2-}$ ions generated from the cathode are transported only in a limited fashion through the open bottom of the anode shroud because the nonporous shroud hinders the transport of the $O^{2-}$ ions to the anode surface, which leads to a decrease in the current density and an increase in the operation time of the process. In the present study, we demonstrate the electrolytic reduction of 1 kg-uranium oxide ($UO_2$) using the porous shroud to investigate its long-term stability. The $UO_2$ with the size of 1~4mm and the density of $10.30{\sim}10.41g/cm^3$ was used for the cathode. The platinum and 5-layer STS mesh were used for the anode and its shroud, respectively. After the termination of the electrolytic reduction run in 1.5 wt.% $Li_2O-LiCl$ molten salt, it was revealed that the U metal was successfully converted from the $UO_2$ and the anode and its shroud were used without any significant damage.

Analysis of thermal changes in bone by various insertion torques with different implant designs (서로 다른 형태의 임플란트의 식립토크가 골에 미치는 열변화에 관한 연구)

  • Kim, Min-Ho;Yeo, In-Sung;Kim, Sung-Hun;Han, Jung-Seok;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.168-176
    • /
    • 2011
  • Purpose: This study aims at investigating the influence of various insertion torques on thermal changes of bone. A proper insertion torque is derived based on the thermal analysis with two different implant designs. Materials and methods: For implant materials, bovine scapula bone of 15 - 20 mm thickness was cut into 35 mm by 40 - 50 mm pieces. Of these, the pieces having 2 - 3 mm thickness cortical bone were used as samples. Then, the half of the sample was immersed in a bath of $36.5^{\circ}C$ and the other half was exposed to ambient temperature of $25^{\circ}C$, so that the inner and surface temperatures reached $36.5^{\circ}C$ and $28^{\circ}C$, respectively. Two types of implants ($4.5{\times}10\;mm$ Br${\aa}$nemark type, $4.8{\times}10\;mm$ Microthread type) were inserted into bovine scapula bone and the temperature was measured by a thermocouple at 0.2 mm from the measuring point. Finite element method (FEM) was used to analyze the thermal changes at contacting surface assuming that the sample is a cube of $4\;cm{\times}4\;cm{\times}2\;cm$ and a layer up to 2 mm from the top is cortical bone and below is a cancellous bone. Boundary conditions were set on the basis of the shape of cavity after implants. SolidWorks was used as a CAD program with the help of Abaqus 6.9-1. Results: In the in-vitro experiment, the Microhead type implant gives a higher maximum temperature than that of the Br${\aa}$nemark type, which is attributed to high frictional heat that is associated with the implant shape. In both types, an Eriksson threshold was observed at torques of 50 Ncm (Br${\aa}$nemark) and 35 Ncm (Microthread type), respectively. Based on these findings, the Microthread type implant is more affected by insertion torques. Conclusion: This study demonstrate that a proper choice of insertion torque is important when using a specific type of implant. In particular, for the Microthread type implant, possible bone damage may be expected as a result of frictional heat, which compensates for initial high success rate of fixation. Therefore, the insertion torque should be adjusted for each implant design. Furthermore, the operation skills should be carefully chosen for each implant type and insertion torque.