• Title/Summary/Keyword: surface cover change

Search Result 184, Processing Time 0.021 seconds

Development of Oceanic General Circulation Model for Climate Change Prediction (기후변화예측을 위한 해양대순환모형의 개발)

  • Ahn, Joong-Bae;Lee, Hyo-Shin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.1
    • /
    • pp.16-24
    • /
    • 1998
  • In this study, Ocean General Circulation Model (OGCM) has been developed as a counterpart of Atmospheric General Circulation (AGCM) for the study of coupled ocean-atmosphere climate system. The oceanic responses to given atmospheric boundary conditions have been investigated using the OGCM. In an integration carried out over 100 simulated years with climatological monthly mean data (EXP 1), most parts of the model reached a quasi-equilibrium climate reproducing many of the observed large-scale oceanic features remarkably well. Some observed narrow currents, however, such as North Equatorial Counter Current, were inevitably distorted due to the model's relatively coarse resolution. The seasonal changes in sea ice cover over the southern oceans around Antarctica were also simulated. In an experiment (EXP 2) under boundary condition of 10-year monthly data (1982-1991) from NCEP/NCAR Reanalysis Project model properly reproduced major oceanic changes during the period, including El Ni$\tilde{n}$os of 1982-1983 and 1986-87. During the ENSO periods, the experiment showed eastward expansion of warm surface waters and a negative vertical velocity anomalies along' the equator in response to expansion of westerly current velocity anomalies as westerly wind anomalies propagated eastward. Simulated anomalous distribution and the time behavior in response to El Ni$\tilde{n}$o events is consistent with that of the observations. These experiments showed that the model has an ability to reproduce major mean and anomalous oceanic features and can be effectively used for the study of ocean-atmosphere coupling system.

  • PDF

Problems on the Door to Door Application of International Air Law Conventions (국제항공운송협약의 Door to Door 운송에의 적용에 관한 문제점)

  • CHOI, Myung-Kook
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.78
    • /
    • pp.1-29
    • /
    • 2018
  • This article demonstrates that both the Warsaw Convention Systemand the Montreal Convention are not designed for multimodal transport, let alone for "Door to Door" transport. The polemic directed against the "Door to Door" application of the Warsaw Convention systemand the Montreal Convention is predominantly driven by the text and the drafting philosophy of the said Contentions that since 1929 support unimodalism-with the rule that "the period of the carriage by air does not expend to any carriage by land, by sea or by inland waterway performed outside an airport" playing a profound role in restricting their multimodal aspirations. The drafters of the Montreal Convention were more adventurous than their predecessors with respect to the boundaries of the Montreal Convention. They amended Art. 18(3) by removing the phrase "whether in an aerodrome or on board an aircraft, or, in the case of landing outside an aerodrome, in any place whatsoever", however, they retained the first sentence of Art. 18(4). The deletion of the airport limitation fromArt. 18(3) creates its own paradox. The carrier can be held liable under the Montreal Convention for the loss or damage to cargo while it is in its charge in a warehouse outside an airport. Yet, damage or loss of the same cargo that occurs during its surface transportation to the aforementioned warehouse and vice versa is not covered by the Montreal Convention fromthe moment the cargo crosses the airport's perimeter. Surely, this result could not have been the intention of its drafters: it certainly does not make any commercial sense. I think that a better solution to the paradox is to apply the "functional interpretation" of the term"airport". This would retain the integrity of the text of the Montreal Convention, make sense of the change in the wording of Art. 18(3), and nevertheless retain the Convention's unimodal philosophy. English courts so far remain loyal to the judgment of the Court of Appeal in Quantum, which constitutes bad news for the supporters of the multimodal scope of the Montreal Convention. According the US cases, any losses occurring during Door to Door transportation under an air waybill which involves a dominant air segment are subject to the international air law conventions. Any domestic rules that might be applicable to the road segment are blatantly overlooked. Undoubtedly, the approach of the US makes commercial. But this policy decision by arguing that the intention of the drafters of the Warsaw Convention was to cover Door to Door transportation is mistaken. Any expansion to multimodal transport would require an amendment to the Montreal Convention, Arts 18 and 38, one that is not in the plans for the foreseeable future. Yet there is no doubt that air carriers and freight forwarders will continue to push hard for such expansion, especially in the USA, where courts are more accommodating.

  • PDF

A study on landforms in Gosung, Gangwon province (강원도 고성 일대의 지형 경관에 대한 연구)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.65-81
    • /
    • 2011
  • The landforms based on granite and basalt in Gosung, Gangwon province were analysed. Some part of this area experienced volcanic activities while most of the area was experiencing erosion of weathered mantle(saprolites) of mesoic granites during cenozoic period. Two different lithologies affect the mode of landscape evolution. The basalt covers the mountain tops as a 'cap rock' with flat surfaces. It shows relatively fresh rock surface with cliff or steep slops at the boundary with weathered granite. The blocks detached from the cliff accumulated at the foot of the cliff(talus) or moved and filled the valley(block streams). These debris slopes cover the deeply weathered granites. In the case of Oeum Mt. and Duibaekjae, the number of point of origin of the basalt flow is not clear. The orientation of blocks from block stream coincides with slope aspects and it can be assumed that the bolcks were moved by solifluction. The landscape change of the block streams are dominated by removal of weathered material from beneath of the valley rather than removal of bedrock blocks themselves.

Generation of Sea Surface Temperature Products Considering Cloud Effects Using NOAA/AVHRR Data in the TeraScan System: Case Study for May Data (TeraScan시스템에서 NOAA/AVHRR 해수면온도 산출시 구름 영향에 따른 신뢰도 부여 기법: 5월 자료 적용)

  • Yang, Sung-Soo;Yang, Chan-Su;Park, Kwang-Soon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.165-173
    • /
    • 2010
  • A cloud detection method is introduced to improve the reliability of NOAA/AVHRR Sea Surface Temperature (SST) data processed during the daytime and nighttime in the TeraScan System. In daytime, the channels 2 and 4 are used to detect a cloud using the three tests, which are spatial uniformity tests of brightness temperature (infrared channel 4) and channel 2 albedo, and reflectivity threshold test for visible channel 2. Meanwhile, the nighttime cloud detection tests are performed by using the channels 3 and 4, because the channel 2 data are not available in nighttime. This process include the dual channel brightness temperature difference (ch3 - ch4) and infrared channel brightness temperature threshold tests. For a comparison of daytime and nighttime SST images, two data used here are obtained at 0:28 (UTC) and 21:00 (UTC) on May 13, 2009. 6 parameters was tested to understand the factors that affect a cloud masking in and around Korean Peninsula. In daytime, the thresholds for ch2_max cover a range 3 through 8, and ch4_delta and ch2_delta are fixed on 5 and 2, respectively. In nighttime, the threshold range of ch3_minus_ch4 is from -1 to 0, and ch4_delta and min_ch4_temp have the fixed thresholds with 3.5 and 0, respectively. It is acceptable that the resulted images represent a reliability of SST according to the change of cloud masking area by each level. In the future, the accuracy of SST will be verified, and an assimilation method for SST data should be tested for a reliability improvement considering an atmospheric characteristic of research area around Korean Peninsula.

Predicting the Effects of Rooftop Greening and Evaluating CO2 Sequestration in Urban Heat Island Areas Using Satellite Imagery and Machine Learning (위성영상과 머신러닝 활용 도시열섬 지역 옥상녹화 효과 예측과 이산화탄소 흡수량 평가)

  • Minju Kim;Jeong U Park;Juhyeon Park;Jisoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.481-493
    • /
    • 2023
  • In high-density urban areas, the urban heat island effect increases urban temperatures, leading to negative impacts such as worsened air pollution, increased cooling energy consumption, and increased greenhouse gas emissions. In urban environments where it is difficult to secure additional green spaces, rooftop greening is an efficient greenhouse gas reduction strategy. In this study, we not only analyzed the current status of the urban heat island effect but also utilized high-resolution satellite data and spatial information to estimate the available rooftop greening area within the study area. We evaluated the mitigation effect of the urban heat island phenomenon and carbon sequestration capacity through temperature predictions resulting from rooftop greening. To achieve this, we utilized WorldView-2 satellite data to classify land cover in the urban heat island areas of Busan city. We developed a prediction model for temperature changes before and after rooftop greening using machine learning techniques. To assess the degree of urban heat island mitigation due to changes in rooftop greening areas, we constructed a temperature change prediction model with temperature as the dependent variable using the random forest technique. In this process, we built a multiple regression model to derive high-resolution land surface temperatures for training data using Google Earth Engine, combining Landsat-8 and Sentinel-2 satellite data. Additionally, we evaluated carbon sequestration based on rooftop greening areas using a carbon absorption capacity per plant. The results of this study suggest that the developed satellite-based urban heat island assessment and temperature change prediction technology using Random Forest models can be applied to urban heat island-vulnerable areas with potential for expansion.

Fertilization Effects on Soil Properties, Understory Vegetation Structure and Growth of Pinus densiflora Seedlings Planted after Forest Fires (산불피해지에 식재 조림된 소나무임분의 시비처리에 따른 소나무 묘목의 생장, 토양특성 및 하층식생 구조의 변화)

  • Won, Hyung-kyu;Lee, Yoon Young;Jeong, Jin-Hyun;Koo, Kyo-Sang;Lee, Choong-Hwa;Lee, Seung-Woo;Jeong, Yong-Ho;Kim, Choonsig;Kim, Hyungho
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.3
    • /
    • pp.334-341
    • /
    • 2006
  • This study was to investigate the growth of planted red pine (Pinus densiflora S. et. Z.) seedling, soil properties and understory vegetation structure after fertilizer treatments [unfertilized plot (control), CF plot (Combination Fertilizer), UF plot (Urea Formaldehyde Fertilizer)] in a Pinus densiflora stand planted after the forest fires in Gosung, Gangwon province. The height growth rates of seedlings in four years were 264% in unfertilized, 404% in CF, and 388% in UF plots, respectively. The root collar diameters were increased 340% in unfertilized, 454% in CF, and 427% in UF plots, respectively. No significant changes occurred in soil total nitrogen and potassium ion ($K^+$) with the fertilization. However, available $P_2O_5$, content in the soil surface (0-15 cm) increased with the fertilizer application. Soil organic matter increased significantly with fertilizer treatments, while gradual decrease occurred in unfertilized plots. Sodium ion ($Na^-$) decreased in all sites. Soil pH, CEC, calcium ion ($Ca^{2+}$) and magnesium ion ($Mg^{2+}$) contents were not significantly different among treatments. Although Shannon's species diversity index and species richness in understory vegetation did not change with fertilizer treatments, vegetation cover rates in forest floor increased significantly with the fertilization. These results suggest that the increase of pine seedling growth and vegetation cover rates with fertilization could enhance soil stabilization in forest tire areas.

Analysis of the Effect of Heat Island on the Administrative District Unit in Seoul Using LANDSAT Image (LANDSAT영상을 이용한 서울시 행정구역 단위의 열섬효과 분석)

  • Lee, Kyung Il;Ryu, Jieun;Jeon, Seong Woo;Jung, Hui Cheul;Kang, Jin Young
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.821-834
    • /
    • 2017
  • The increase in the rate of industrialization due to urbanization has caused the Urban Heat Island phenomenon where the temperature of the city is higher than the surrounding area, and its intensity is increasing with climate change. Among the cities where heat island phenomenon occurs, Seoul city has different degree of urbanization, green area ratio, energy consumption, and population density in each administrative district, and as a result, the strength of heat island is also different. So It is necessary to analyze the difference of Urban Heat Island Intensity by administrative district and the cause. In this study, the UHI intensity of the administrative gu and the administrative dong were extracted from the Seoul metropolitan area and the differences among the administrative districts were examined. and linear regression analysis were conducted with The variables included in the three categories(weather condition, anthropogenic heat generation, and land use characteristics) to investigate the cause of the difference in heat UHI intensity in each administrative district. As a result of analysis, UHI Intensity was found to be different according to the characteristics of administrative gu, administrative dong, and surrounding environment. The difference in administrative dong was larger than gu unit, and the UHI Intensity of gu and the UHI Intensity distribution of dongs belonging to the gu were also different. Linear regression analysis showed that there was a difference in heat island development intensity according to the average wind speed, development degree, Soil Adjusted Vegetation Index (SAVI), Normalized Difference Built-up Index (NDBI) value. Among them, the SAVI and NDBI showed a difference in value up to the dong unit and The creation of a wind route environment for the mitigation of the heat island phenomenon is necessary for the administrative dong unit level. Therefore, it is considered that projects for mitigating heat island phenomenon such as land cover improvement plan, wind route improvement plan, and green wall surface plan for development area need to consider administrative dongs belonging to the gu rather than just considering the difference of administrative gu units. The results of this study are expected to provide the directions for urban thermal environment design and policy development in the future by deriving the necessity of analysis unit and the factors to be considered for the administrative city unit to mitigate the urban heat island phenomenon.

Seasonal and Inter-annual Variations of Sea Ice Distribution in the Arctic Using AMSR-E Data: July 2002 to May 2009 (AMSR-E 위성 데이터를 이용한 북극해빙분포의 계절 변동 및 연 변동 조사: 2002년 7월 ~ 2009년 5월)

  • Yang, Chan-Su;Na, Jae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2009
  • The Arctic environment is sensitive to change of sea-ice distribution. The increase and decrease of sea ice work to an index of globe warming progress. In order to predict the progress of hereafter earth global warming, continuous monitoring regarding a change of the sea ice area in the Arctic should be performed. The remote sensing based on an artificial satellite is most effective on the North Pole. The sea ice observation using a passive microwave sensor has been continued from 1970's. The determination of sea ice extent and ice type is one of the great successes of the passive microwave imagers. In this paper, to investigate the seasonal and inter-annual variation of sea-ice distribution we used here the sea ice data from July 2002 to May 2009 around the Arctic within $60^{\circ}N$ for the AMSR-E 12.5km sea-ice concentration, a passive microwave sensor. From an early analysis of these data, the arctic sea-ice extent has been steadily decreasing at a rate of about 3.1%, accounting for about $2{\times}10^5\;km^2$, which was calculated for the sea-ice cover reaching its minimum extent at the end of each summer. It is also revealed that this trend corresponds to a decline in the multi-year ice that is affected mainly by summer sea surface and air temperature increases. The extent of younger and thinner (first-year) ice decreased to the 2007 minimum, but rapidly recovered in 2008 and 2009 due to the dramatic loss in 2007. Seasonal variations of the sea-ice extent show significant year-to-year variation in the seasons of January-March in the Barents and Labrador seas and August-October in the region from the East Siberian and Chukchi seas to the North Pole. The spatial distribution of multi-year ice (7-year old) indicates that the perennial ice fraction has rapidly shrunk recently out of the East Siberian, Laptev, and Kara seas to the high region of the Arctic within the last seven years and the Northeast Passage could become open year-round in near future.

A Localized Secular Variation Model of the Geomagnetic Field Over Northeast Asia Region between 1997 to 2011 (지역화된 동북아시아지역의 지구자기장 영년변화 모델: 1997-2011)

  • Kim, Hyung Rae
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.51-63
    • /
    • 2015
  • I produced a secular variation model of geomagnetic field by using the magnetic component data from four geomagnetic observatories located in Northeast Asia during the years between 1997 and 2011. The Earth's magnetic field varies with time and location due to the dynamics of fluid outer core and the magnetic observatories on the surface measure in time series. To adequately represent the magnetic field or secular variations of the Earth, a spatio-temporal model is required. In making a global model, satellite observations as well as limited observatory data are necessary to cover the regions and time intervals. However, you need a considerable work and time to process a huge amount of the dataset with complicated signal separation procedures. When you update the model, the same amount of chores is demanded. Besides, the global model might be affected by the measurement errors of each observatory that are biased and the processing errors in satellite data so that the accuracy of the model would be degraded. In this study, as considered these problems, I introduced a localized method in modeling secular variation of the Earth's magnetic field over Northeast Asia region. Secular variation data from three Japanese observatories and one Chinese observatory that are all in the INTERMAGNET are implemented in the model valid between 1997 to 2011 with the interval of 6 months. With the resulting model, I compared with the global model called CHAOS-4, which includes the main, secular variation and secular acceleration models between 1997 to 2013 by using the three satellites' databases and INTERMAGNET observatory data. Also, the geomagnetic 'jerk' which is known as a sudden change in the time derivatives of the main field of the Earth, was discussed from the localized secular acceleration coefficients derived from spline models.

RPC Correction of KOMPSAT-3A Satellite Image through Automatic Matching Point Extraction Using Unmanned AerialVehicle Imagery (무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정)

  • Park, Jueon;Kim, Taeheon;Lee, Changhui;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1135-1147
    • /
    • 2021
  • In order to geometrically correct high-resolution satellite imagery, the sensor modeling process that restores the geometric relationship between the satellite sensor and the ground surface at the image acquisition time is required. In general, high-resolution satellites provide RPC (Rational Polynomial Coefficient) information, but the vendor-provided RPC includes geometric distortion caused by the position and orientation of the satellite sensor. GCP (Ground Control Point) is generally used to correct the RPC errors. The representative method of acquiring GCP is field survey to obtain accurate ground coordinates. However, it is difficult to find the GCP in the satellite image due to the quality of the image, land cover change, relief displacement, etc. By using image maps acquired from various sensors as reference data, it is possible to automate the collection of GCP through the image matching algorithm. In this study, the RPC of KOMPSAT-3A satellite image was corrected through the extracted matching point using the UAV (Unmanned Aerial Vehichle) imagery. We propose a pre-porocessing method for the extraction of matching points between the UAV imagery and KOMPSAT-3A satellite image. To this end, the characteristics of matching points extracted by independently applying the SURF (Speeded-Up Robust Features) and the phase correlation, which are representative feature-based matching method and area-based matching method, respectively, were compared. The RPC adjustment parameters were calculated using the matching points extracted through each algorithm. In order to verify the performance and usability of the proposed method, it was compared with the GCP-based RPC correction result. The GCP-based method showed an improvement of correction accuracy by 2.14 pixels for the sample and 5.43 pixelsfor the line compared to the vendor-provided RPC. In the proposed method using SURF and phase correlation methods, the accuracy of sample was improved by 0.83 pixels and 1.49 pixels, and that of line wasimproved by 4.81 pixels and 5.19 pixels, respectively, compared to the vendor-provided RPC. Through the experimental results, the proposed method using the UAV imagery presented the possibility as an alternative to the GCP-based method for the RPC correction.