• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.028 seconds

Coupled Finite Element Analysis for Semi-implicit Linear and Fully-implicit Nonlinear Scheme in Partially Saturated Porous Medium

  • Kim, Jae-Hong;Regueiro, Richard A.
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.59-65
    • /
    • 2010
  • The paper presents a comparison between a semi-implicit time integration linear finite element implementation and fully-implicit nonlinear Newton-Raphson finite element implementation of a triphasic small strain mixture formulation of an elastic partially saturated porous medium. The pore air phase pressure pa is assumed atmospheric, i.e., $p_a$ = 0, although the formulation and implementation are general to handle increase in pore air pressure as a result of loading, if needed. The solid skeleton phase is assumed linear isotropic elastic and partially saturated 'consolidation' in the presence of surface infiltration and traction is simulated. The verification of the implementation against an analytical solution for partially saturated pore water flow (no deformation) and comparison between the two implementations is presented and the important of the porosity-dependent nature of the partially saturated permeability is assessed on comparison with a commercial code for the partially saturated flow with deformation. As a result, the response of partially saturated permeability subjected to the porosity influences on the saturation of a soil, and the different behaviors of the partially saturated soil between staggered and monolithic coupled programs is worth of attention because the negative pore water pressure in the partially saturated soil depends on the difference.

Simple Sequence Repeat (SSR)-Based Gene Diversity in Burkholderia pseudomallei and Burkholderia mallei

  • Song, Han;Hwang, Junghyun;Myung, Jaehee;Seo, Hyoseok;Yi, Hyojeong;Sim, Hee-Sun;Kim, Bong-Su;Nierman, William C.;Kim, Heenam Stanley
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.237-241
    • /
    • 2009
  • Pathogens Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) contain a large number (> 12,000) of Simple Sequence Repeats (SSRs). To study the extent to which these features have contributed to the diversification of genes, we have conducted comparative studies with nineteen genomes of these bacteria. We found 210 genes with characteristic types of SSR variations. SSRs with nonamer repeat units were the most abundant, followed by hexamers and trimers. Amino acids with smaller and nonpolar R-groups are preferred to be encoded by the variant SSRs, perhaps due to their minimal impacts to protein functionality. A majority of these genes appears to code for surface or secreted proteins that may directly interact with the host factors during pathogenesis or other environmental factors. There also are others that encode diverse functions in the cytoplasm, and this protein variability may reflect an extensive involvement of phase variation in survival and adaptation of these pathogens.

Characteristics of Polymer irradiated by Low energy Ion Beam

  • sung Han;Yoon, Ki-Hyun;Jung, Hyung-Jin;Koh, Seok-Keun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.109-109
    • /
    • 1999
  • Recently, low energy ion beam irradiation has been adopted for surface modification. Low energy ion beam irradiation has many advantages in polymer engineering such as weak damage, good adhesion, noticeably-enhanced wettability(less than 15 degree), good reproducibility and so on. In this experiment, chemical reactions between free radicals and environment gas species have been investigated using angle-resolved XPS and TRIM code. In the case of low ion beam energy (around 1 keV), energy loss in polymer is mainly originated from atomic collisions instead of electronic interference. Atomic collisions could generated displaced atoms and free radicals. Cold cathode-ion source equipped with 5cm convex grid was used in an O2 environment. Base and working pressure were 5$\times$10-6 and 2.3$\times$10-4 Torr. Flow rates of argon and oxygen were fixed at 1.2 and 8 sccm. target materials are polyethylene polyvinyidenefluoride and polytetrafluoroethylene.

  • PDF

The Material Properties on the Crushing Effect of Recycled Aggregates (파쇄횟수가 순환골재의 품질특성에 미치는 영향)

  • Won, Chul;Park, Sang-Joon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.125-130
    • /
    • 2010
  • It is necessary to re-establish the code and to control the quality of the recycled aggregate itself for ensuring the useability of the recycled aggregate using waste concrete. Generally, adhering mortar cause of the water absorption ratio increment and strength decreased at the surface of the aggregate of the recycled aggregate using waste concrete, thus removing the adhering mortar could increase the useability of the recycled aggregate in the concrete industry. In this study, as a quality control method of the recycled aggregate using waste concrete, the quality characteristic of the recycled aggregate according to the mixing proportion between the recycled and the natural aggregate is obtained Therefore, a system is established to reuse the recycled aggregate in the construction industry.

  • PDF

Calculation of the induced voltage and current for a human and a car close to 765 kV AC double circuit transmission line (765 kV 교류 2회선 송전선 하의 인체 및 자동차에 유도되는 전압, 전류 계산)

  • 민석원;김응식;명성호;이병윤;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.301-309
    • /
    • 1996
  • This paper estimates the electric field effect near 765[kV] AC double transmission line with numerical data. The induced voltage and current of a human and car under who kinds of phase arrangement are calculated when each of two objects is insulated or grounded. When the calculated results of the low-reactance and superposition phase arrangement are compared, it is proved that the induced voltage and current of the former are about 30 [%] smaller than that of the latter. The induced current of a human and car are less than 0.5[mA] which is about 10[%] less than that of the American National Standard Code. Also the induced voltage and current of dead lines by other live lines are calculated. Finally the effective number and position of shield wires to reduce the field in ground level are considered. charge simulation method and surface charge method are used to simulate the 2 or 3 dimensional transmission line model respectively.

  • PDF

Modeling of Spray Impingement and Fuel Film Formation in HSDI Diesel Engines (고속직분식 디젤엔진에서의 분무충돌과 연료액막형성 모델링)

  • Kim, Man-Sik;Min, Gyeong-Deok;Gang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2001
  • Spray impingement and fuel film formation models were developed and incorporated into the computational fluid dynamics code. STAR-CD. The spray/wall interaction process was modeled by considering the change of behaviour with surface temperature conditions and the fuel film formation. We divided the behaviour of fuel droplets after impingement into rebound, spread and splash using the Weber number and the parameter K. The Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, Navier-Stokes and energy equations along the direction of fuel film thickness. Validation of the models was conducted using previous diesel spray experimental data and the present experimental results for the gasoline spray impingement. In all the cases, the prediction compared reasonably well with the experimental results. The spray impingement and fuel film formation models have been applied to the spray/wall impingement in high speed direct injection diesel engines.

Numerical and random simulation procedure for preliminary local site characterization and site factor assessing

  • Beneldjouzi, Mohamed;Laouami, Nasser;Slimani, Abdennasser
    • Earthquakes and Structures
    • /
    • v.13 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • Seismic analysis of local site conditions is fundamental for a reliable site seismic hazard assessment. It plays a major role in mitigation of seismic damage potential through the prediction of surface ground motion in terms of amplitude, frequency content and duration. Such analysis requires the determination of the transfer function, which is a simple tool for characterizing a soil profile by estimating its vibration frequencies and its amplification potential. In this study, numerical simulations are carried out and are then combined with a statistical study to allow the characterization of design sites classified by the Algerian Building Seismic Code (RPA99, ver 2003), by average transfer functions. The mean transfer functions are thereafter used to compute RPA99 average site factors. In this regard, coming up seismic fields are simulated based on Power Spectral Density Functions (PSDF) defined at the rock basement. Results are also used to compute average site factor where, actual and synthetic time histories are introduced. In absence of measurement data, it is found that the proposed approach can be used for a better soil characterization.

Multi-Point Aerodynamic Design Optimization of DLR F-6 Wing-Body-Nacelle-Pylon Configuration

  • Saitoh, Takashi;Kim, Hyoungjin;Takenaka, Keizo;Nakahashi, Kazuhiro
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.403-413
    • /
    • 2017
  • Dual-point aerodynamic design optimization is conducted for DLR-F6 wing-body-nacelle-pylon configuration adopting an efficient surface mesh movement method for complex junction geometries. A three-dimensional unstructured Euler solver and its discrete adjoint code are utilized for flow and sensitivity analysis, respectively. Considered design conditions are a low-lift condition and a cruise condition in a transonic regime. Design objective is to minimize drag and reduce shock strength at both flow conditions. Shape deformation is made by variation of the section shapes of inboard wing and pylon, nacelle vertical location and nacelle pitch angle. Hicks-Henne shape functions are employed for deformation of the section shapes of wing and pylon. By the design optimization, drag coefficients were remarkably reduced at both design conditions retaining specified lift coefficient and satisfying other constraints. Two-point design results show mixed features of the one-point design results at low-lift condition and cruise conditions.

Integrity Assessment of Sharp Flaw in CANDU Pressure Tube Using Probabilistic Fracture Mechanics (확률론적 파괴역학을 도입한 CANDU 압력관의 예리한 결함에 대한 건전성평가)

  • Lee, Jun-Seong;Gwak, Sang-Rok;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.653-659
    • /
    • 2002
  • This paper describes a probabilistic fracture mechanics(PFM) analysis based on Monte Carlo(MC) simulation. In the analysis of CANDU pressure tube, the depth and aspect ratio of an initial semi-elliptical surface crack, a fracture toughness value and delayed hydride cracking(DHC) velocity are assumed to be probabilistic variables. As an example, some failure probabilities of piping and CANDU pressure tube are calculated using MC method with the stratified sampling MC technique, taking analysis conditions of normal operations. In the stratified MC simulation, a sampling space of probabilistic variables is divided into a number of small cells. For the verification of analysis results, a comparison study of the PFM analysis using other commercial code is carried out and a good agreement was observed between those results.

Numerical Study on Laminar Diffusion Flame with Radiation Along Vertical Wall (수직평판에서 복사열전달을 고려한 층류확산화염에 관한 수치적 연구)

  • 안중기;김진곤
    • Fire Science and Engineering
    • /
    • v.8 no.1
    • /
    • pp.9-20
    • /
    • 1994
  • To understand the phenomena of laminar diffusion flame along vortical walt, the numerical analysis has been performed. Keller-box method was used to solve the problem in the boundary layer. The governing equation is simplified by thin-flame approxiamtion. And energy and chemical species equations are normalized with Schvab-Zeldovich variables. A physical domain is divided the boundary layer along streamwise coordinate as the combustion region and the propagation region. And Radiation model is concerned in these region. As a result, typical phenomena have been observed. Comparison of the numerical results with experimental data shows that the present method can successfully predict phenomena of laminar diffusion flame along upright surface.

  • PDF