• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.027 seconds

SHIELDING DESIGN ANALYSES FOR SMART CORE WITH 49-CEDM

  • Kim, Kyo-Youn;Kim, Ha-Yong;Cho, Byung-Oh;Zee, Sung-Quun;Chang, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.225-229
    • /
    • 2001
  • In Korea, an advanced reactor system of 330MWt power called SMART (System integrated Modular Advanced ReacTor) is being developed by KAERI to supply energy for seawater desalination as well as electricity generation. A shielding design of the SMART core with 49 CEDM is established by a two-dimensional discrete ordinates radiation transport analyses. The DORT two-dimensional discrete ordinates transport code is used to evaluate the SMART shielding designs. Three axial regions represent the SMART reactor assembly, each of which is modeled in the R-Z geometry. The BUGLE-96 library is used in the analyses, which consists of 47 neutron and 20 gamma energy groups. The results indicate that the maximum neutron fluence at the bottom of reactor vessel is $5.89 {\times} 10^{17}\;n/cm^2$ and that on the radial surface of reactor vessel is $4.49 {\times} 10^[16}\;n/cm^2$. These results meet the requirement, $1.0 {\times} 10^{20}\;n/cm^2$, in 10 CFR 50.61 and the integrity of SMART reactor vessel during the lifetime of the reactor is confirmed.

  • PDF

Numerical Simulation of Air Flow and Gas Dispersion around Obstacles

  • Nguyen The-Due;Park Warn-Gyu;Duong Ngoe-Hai
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.253-254
    • /
    • 2003
  • Computations of the mean and turbulence flows over three-dimensional hill of conical shape have implemented. Beside the standard ${\kappa}-{\varepsilon}$ , two other modifications proposed by Detering & Etling and Duynkerke for atmospheric applications were also considered. These predictions were compared with the data of a wind tunnel experiment. From the comparison, it was concluded that all three models predict the mean flow velocities equally well while only the Duynkerke's model accurately predicts the turbulence data statistics. It also concluded that there are large discrepancies between model predictions and the measurements near the ground surface. The flow field, which was obtained by using the Duynkerke's modification, was used to simulate gas dispersion from an upwind source. The calculation results are verified based on the measurement data. Modifications of the turbulent Schmidt number were carried out in order to match the measured results. The code was used to investigate the influence of the recirculation zone behind a building of cubical shape on the transport and dispersion of pollutant. For a stack behind and near the obstacle, some conclusions about the effect of the stack height and stack location were derived.

  • PDF

A CFD ANALYSIS FOR THERMAL MIXING IN A SUBCOOLED WATER UNDER TRANSIENT STEAM DISCHARGE CONDITIONS (과도상태 증기제트 방출시 과냉각수조 내의 열혼합 해석)

  • Kang H.S.;Kim Y.S.;Chun H.G.;Song C.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.8-18
    • /
    • 2006
  • A CFD benchmark calculation for a steam blowdown test was performed for 30 seconds to develop the methodology of numerical analysis for the thermal mixing between steam and subcooled water. In the CFD analysis, the grid model simulating the sparger and the IRWST pool were developed by the axisymmetric condition and then the steam condensation phenomena by a direct contact was modelled by the so-called condensation region model. Thermal mixing phenomenon in the subcooled water tank was treated as an incompressible flow, a free surface flow between the air and the water, a turbulent flow, and a buoyancy flow. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. The commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behavior reasonably well when a sufficient number of mesh distribution and a proper numerical method are adopted.

Separation characteristics of particles in a self-rotating type centrifugal oil purifier

  • Pyo, Young-Seok;Jung, Ho-Yun;Choi, Yoon-Hwan;Doh, Deog-Hee;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The centrifugal oil purifier is used in an engine for lubrication and to remove impurities. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. An impure particle in the oil is separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are absorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviors of particles in this centrifugal oil purifier were investigated numerically and the filtration efficiencies was evaluated. For calculations, a commercial code is used and the SST (Shear Stress Transport) turbulence model has been adopted. The MFR (Multi Frames of Reference) method is introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies are evaluated. It has been verified that the filtration efficiency is increased with the increments in the particle size, the particle density and the rotating speed of the cylindrical chamber.

A Study on the Design of Knit be based Knitting Technique -Focused on the Exhibition- (니트의 편직기법에 의한 디자인 연구 -작품제작을 중심으로-)

  • 이선희;이순홍
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.1
    • /
    • pp.99-116
    • /
    • 2003
  • Knit is classified into two such as basic texture and applied one according to knitting principle, and the basic texture of weft knitting consists of single knit. rib knit, purl knit and interlock knit. The basic texture of warp knitting consists of double knit texture, double code knit texture and double vandyke knit texture. Fourteen costumes were produced with eighteen (18) different types and twenty four (24) raw materials, and we were trying to show a wide range of costumes produced with knitting by making two different brands at random and making different designs depending on four seasons. Knitting technique is very important element in that it allows special surface effectiveness and decides the characteristic of knitting materials. Knit designer plays very important roles such as selection of raw thread, deciding knitting technique and type of knitting machine in designing the knit. Therefore, the knit designer requires the ability to utilize the function of knitting machine to the maximum, the effort to acquire the variety of knitting technique, develop the new knitting technique and for the improvement of knitting design.

NUMERICAL STUDY OF THE SLOSHING PHENOMENON IN THE 2-DIMENSIONAL RECTANGULAR TANK WITH VARIABLE FREQUENCY AT A LOW FILLING LEVEL (가진 주파수에 따른 이차원 사각탱크 내부의 슬로싱에 관한 수치적 연구)

  • Jung, J.H.;Lee, C.Y.;Yoon, H.S.;Kim, H.J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • The present study investigates the sloshing phenomena in a two-dimensional rectangular tank at a low filling level by using a level set method based on finite volume method. The code validations are performed by comparing between the present results and previous numerical and experimental results, which gives a good agreement. Various excitation frequencies and excitation amplitude of the 30% filling height tank have been considered in order to observe the dependence of the sloshing behavior on the excitation frequency and amplitude. Regardless of excitation amplitude, the maximum value of wall pressure occurs when the excitation frequency reaches the natural frequency. The time sequence of free surface and corresponding streamlines for excitation frequencies have been presented to analysis the variation of wall pressure according to time, which contributes to explain the double peaks in the time variation of wall pressure.

Methods of Reconstructing Numerical Analysis Program for Utilizing the Internet (인터넷을 활용하기 위한 수치해석 프로그램의 재구성 방법)

  • Song Heeyong;Koak Youngkyun;Ko Sungho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.63-66
    • /
    • 2002
  • The present study introduces some useful methods of implementing the Internet numerical analysis program with existing numerical codes for utilizing the Internet environment. The Internet gives developers good environment for development and release. Several methods were suggested, and some of them were implemented with an existing numerical code named SOLA-VOF, a computational fluid dynamics program to solve two-dimensional transient flow problems with free surface. This was reconstructed with Java technologies and compared with the original one. Java technologies have been applied to development of Internet applications for a long time. The objective of this work is to contrive methods of implementing Internet numerical analysis program with existing numerical codes and confirm the possibility of them. Methods using the applet-servlet communication were suggested and implemented. In addition, the Java web services with XML was introduced, which makes possible the cooperation of components. Although the concept has been suggested and developed for business applications, it can also be used for engineering softwares. Therefore, this study will be a preparation for numerical analysis to participate in engineering web services.

  • PDF

Kinetic energy conservative algorithm in moving grid system using segregated finite element formulation (이동격자계에서 분리유한요소법에 의한 운동에너지 보존 알고리듬)

  • Seong, Jae-Yong;Choe, Hyeong-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1538-1551
    • /
    • 1997
  • Kinetic energy conservation for fixed and moving grids is examined in time-accurate finite element computation of fully unsteady inviscid flows. As numerical algorithms, fractional step method (FSM) and modified SIMPLE are used. To simulate the flow in moving grid system, arbitrary Lagrangian-Eulerian (ALE) method is adopted. In the present study, the energy conserving time integration rule for finite element algorithm is proposed and discussed schematically. It is shown that the discretization by Crank-Nicolson in time and Galerkin (central difference) in space must be used to ensure energy conservation. The developed code has been tested for a standing vortex in fixed or moving grid system, sloshing in a tank and propagation of a solitary wave, and has been shown to be a completely energy conserving algorithm.

Experimental and Numerical Investigation for the Effect of Baffles on Heat Transfer Behaviors in a Rectangular Channel (사각채널에서 설치된 배플에 의한 열전달 거동에 관한 실험 및 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Bae, Sung-Taek
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.45-46
    • /
    • 2006
  • Experimental and numerical analysis on the heat transfer behaviors and the associated frictional loss in a rectangular channel with two inclined perforated baffles($\;5^{\circ}$) mounted on the bottom plate has been systematically performed. The parametric effects of perforated baffles (3, 6, 9 holes) and flow Reynolds number on heat transfer characteristics of the heated target surface are explored. A combination of two baffles of same overall size was considered and the flow Reynolds number for this study is varied between 28,900 and 61,800. Comparisons of the experimental data with the numerical results by commercial code CFX 5.7 are made. As for the investigation of heat transfer behaviors on local Nusselt number with the two baffles installed at $x/D_h=0.8\;and\;x/D_h=8.0$, it is evident that there exist an optimum perforation density to maximize heat transfer coefficients; i.e., the maximum Nusselt number decreases with increasing number of holes.

  • PDF

Development of form rolling technology for high precision worm using the rack dies of counter flow type (Counter Flow 방식의 랙 다이를 이용한 고정밀도 Worm 전조기술 개발)

  • 고대철;박준모;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1861-1864
    • /
    • 2003
  • The objective of this study is to suggest the form rolling technology to produce high precision worm. Rack dies and roll dies are usually used to roll parts with worm teeth. The form roiling processes of worm shaft used as automotive part using the rack dies of counter flow type and the roll dies are considered and simulated by the commercial finite element code, DEFORM-3D. It is also important to determine the initial blank diameter in form rolling because it affects the quality of thread. The calculation method of the initial blank diameter in form rolling is suggested and it is verified by FE-simulation. The experiments using rack dies and roll dies are performed under the same conditions as those of simulation. The results of simulation and experiment in this study show that the from rolling process of worm shaft using the rack dies is decidedly superior to that using rolling dies from the aspect of the surface roughness and the profile of worm.

  • PDF