• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.027 seconds

Effect of Film-Temperature Boundary Conditions on the Lubrication Performance of Parallel Slider Bearing (유막온도경계조건이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.207-213
    • /
    • 2017
  • In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.

A Comparative Study on the Housing Standard (최소주거기준에 대한 비교 연구)

  • Kim, Do-Yeon;Kim, Min-Kyoung;Yoon, Chae-Shin;Jun, Nam-Il
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.203-208
    • /
    • 2008
  • The purpose of the study is to establish the concept of residential standard, and at the same time to investigate the area of the minimum residential standard in the countries of the world through the preceding studies. In addition, it also aims at establishing the objective residential standard by comparing the residential standard of Korea with that of foreign countries, examining the problems and finding out the matters to be improved through the comparison of the residential standard in advanced countries with the minimum residential standard of Korea. The standard residential area, derived from the process of examining the minimum residential standard, will be used as the basic material for the calculation of the reasonable area in the surface plan for the study of low-cost housing development. The method of the study is to establish the concept of residential standard and at the same time to find out the problems in the minimum residential standard of Korea and improvement methods through the comparison of the residential standards in other countries. As the result of the studies focused on the area among the residential standards, it is found out that the Korea's residential area per capita is established as the least in comparison with that of advanced countries. The real area decided depending on the size of social space suitable for living can play a role in improving the degree of satisfaction in the person's living in the residential area. Therefore, it is urgently necessary to make a depth study on the surface area of the minimum residential standard, and it is also required to propose the residential standard and directions for the improvement of the qualitative level rather the quantitative expansion of residential structures.

  • PDF

A study on the flow and aeroacoustic characteristics of the sirocco fan of OTR (Over The Range) (후드겸용 전자레인지 시로코홴의 유동 및 소음특성에 관한 연구)

  • Jeon, Wan-Ho;Rew, Ho Seon;Song, Sung-Bae;Shon, Sang-Bun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.17-23
    • /
    • 2004
  • Aeroacoustic characteristics of sirocco fan used in Over-The-Range (OTR) has been analyzed in this paper. A microwave hood combination over the gas range is short for the OTR. The flow phenomena of the double-sided sirocco fan was analyzed numerically and experimentally by using commercial code and three dimensional PIV for flow visualization. Also, microphone array is used in order to understand acoustic characteristics of OTR. Two dimensional unsteady flow and acoustic simulation is tried to qualitatively estimate the effects of tonal noise and broadband noise on the overall sound pressure level. It is found that tonal sound is generated from the strong interaction between the impeller and cutoff while broadband sound is generated from the strong secondary flows along the scroll surface. To reduce the noise level, the V-shape cut-off was applied to improve the sound quality by reducing tonal noise. So the peak noise at BPF (Blade Passing Frequency) was almost reduced. The shape of flow-guide to suppress the secondary flow over the scroll surface was carefully checked. It is found that this affects flow pattern at the fan exit and reduces the broad band noise. Through this numerical and experimental study, the sound pressure level was lowered by 4dBA compared to that of the previous fan at the operating point.

Dynamic Characteristics Simulation for a Simplex Swirl Injector (스월 인젝터의 동특성에 대한 수치해석 연구)

  • 박홍복
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.67-75
    • /
    • 2006
  • A fully nonlinear model accounting for swirling effect has been applied in analyzing the dynamic response for a classical swirl injector. The current work applied highly accurate Boundary Element Methods (BEMs) in assessing its static and dynamic characteristics. On the basis of moving surface treatment method and surface instability study, which are obtained from the previous static characteristics analysis in pressure-swirl injectors, this work was expanded for analyzing the dynamics of a classical swirl injector. The dynamic response through injector components for disturbed inflow condition was investigated. The modified code was validated from comparison with the theoretical result for a typical swirl injector. Clearly the simulated result shows the interesting characteristics of swirl injectors to provide either amplification or damping of the input disturbance through each component. These results give promise in applying the current model to nonlinear dynamic characteristics of swirl injectors.

Estimation of Aerosol Vertical Profile from the MODIS Aerosol Optical Thickness and Surface Visibility Data (MODIS 에어러솔 광학두께와 지상에서 관측된 시정거리를 이용한 대기 에어러솔 연직분포 산출)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • This study presents a modeling of aerosol extinction vertical profiles in Korea by using the Moderate Resolution Imaging Spectro-radiometer(MODIS) derived aerosol optical thickness(AOT) and ground based visibility observation data. The method uses a series of physical equations for the derivation of aerosol scale height and vertical profiles from MODIS AOT and surface visibility data. The modelled results under the standard atmospheric condition showed small differences with the standard aerosol vertical profile used in the radiative transfer model. Model derived aerosol scale heights for two cases of clean(${\tau}_{MODIS}=0.12{\pm}0.07$, visibility=$21.13{\pm}3.31km$) and hazy atmosphere(${\tau}_{MODIS}=1.71{\pm}0.85$, visibility=$13.33{\pm}5.66km$) are $0.63{\pm}0.33km$ and $1.71{\pm}0.84km$. Based on these results, aerosol extinction profiles can be estimated and the results are transformed into the KML code for visualization of dataset. This has implications for atmospheric environmental monitoring and environmental policies for the future.

Base isolation performance of a cone-type friction pendulum bearing system

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Sung-Wan;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.227-248
    • /
    • 2015
  • A CFPBS (Cone-type Friction Pendulum Bearing System) was developed to control the acceleration delivered to a structure to prevent the damage and degradation of critical communication equipment during earthquakes. This study evaluated the isolation performance of the CFPBS by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced with the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with a seismic isolator system consisting of 4 CFPBS. To confirm the earthquake-resistant performance, a numerical analysis program was prepared using the equation of the CFPBS induced from the equations of motion. The equation reported by Tsai for the rolling-type seismic isolation bearings was proposed to design the equation of the CFPBS. Artificial seismic waves that satisfy the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and the skew angle of friction surface were considered for numerical analysis with El Centro NS, Kobe NS and artificial seismic waves. The CFPBS isolation performance evaluation was based on the numerical analysis results, and comparative analysis was performed between the results from numerical analysis and simplified theoretical equation under the same conditions. The validity of numerical analysis was verified from the shaking table test.

Experimental and Numerical Analysis for Effects of Two Inclined Baffles on Heat Transfer Augmentation in a Rectangular Duct (사각 덕트 내에 설치된 2개의 경사진 배플에 의한 열전달 증진 효과에 관한 실험 수치해석)

  • Kang, Ho-Keun;Ahn, Soo-Whan;Putra, Ary Bachtiar Krishna
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.751-760
    • /
    • 2007
  • Baffles enhance heat transfer by disturbing boundary layer and bulk flow, creating impingement, and increasing heat transfer surface area. This study was performed to determine how the two inclined baffles (${\alpha}=5^{\circ}$ perforated models) placed at a rectangular channel affect heat transfer and associated friction characteristics. The parametric effects of perforated baffles (3, 6 and 12 holes) and flow Reynolds number ranging from 28,900 to 61,800 on the heated target surface are explored. Comparisons of the experimental data with the numerical results by commercial code CFX 10.0 are presented. As for the investigation of heat transfer behaviors on local Nusselt number with two baffles placed at $x/D_h=0.8$ and $x/D_h=8.0$ of the edge of baffles, it is evident that the inclined perforated baffles augment overall heat transfer significantly by both jet impingement and boundary layer separation. There exists an optimum perforation density to maximize heat transfer coefficients; i.e., the average Nusselt number increases with increasing number of holes, but the friction factor decreases with an increase in the hole number placed at baffles.

Study on the Off-design Performance on a Plug Nozzle with Variable Throat Area

  • Azuma, Nobuyuki;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Hongo, Motoyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.644-648
    • /
    • 2004
  • In the present study were examined numerically and experimentally the off-design performance characteristics on an axisymmetric plug nozzle with variable throat area. In this nozzle concept, its throat area can be changed by translating the plug into the axial direction. First, a mixed-expansion plug nozzle, in which two expansion parts are arranged both inside and outside, was designed by means of the method of characteristics. Second, the CFD analysis was verified by the cold-flow wind tunnel test. Third, its performance characteristics were evaluated over a wide range of pressure ratio from half to double throat area through the design point, using the CFD code verified by the wind tunnel tests. It was made clear from the study that not so critical thrust efficiency losses were found and the maximum thrust efficiency loss was at most approximately 5 % under off-design conditions without external flow. This result shows that a plug nozzle can give the altitude compensation even under off-design geometry operations. However, shock waves were observed in the inner expansion part under the doubled throat area operation and thus some thermal problems may be caused on the plug surface. Furthermore, collapse of cell structure on the plug surface was observed with external flow (around Mach number 2.0) as it became lower pressure ratio below the design point and the fact may result in big efficiency loss regardless of geometrical configuration.

  • PDF

Evaluation of Horizontal Shear Strength of Prestressed Hollow-Core Slabs with Cast-in-Place Topping Concrete (프리스트레스트 중공 슬래브와 현장타설된 토핑콘크리트의 수평전단성능 평가)

  • Im, Ju-Hyeuk;Park, Min-Kook;Lee, Deuck-Hang;Seo, Soo-Yeon;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.741-749
    • /
    • 2014
  • Prestressed hollow-core (PHC) slabs are structurally-optimized lightweight precast floor members for long-span concrete structures, which are widely used in construction markets. In Korea, the PHC slabs have been often used with cast-in-place (CIP) topping concrete as a composite slab system. However, the PHC slab members produced by extrusion method use concrete having very low slump, and it is very difficult to make sufficient roughness on the surface as well as to provide shear connectors. In this study, a large number of push-off tests was conducted to evaluate interfacial shear strengths between PHC slabs and CIP topping concrete with the key variable of surface roughness. In addition, the horizontal shear strengths specified in the various design codes were evaluated by comparing to the test results that were collected from literature.

Flow Investigations in the Crossover System of a Centrifugal Compressor Stage

  • Reddy, K. Srinivasa;Murty, G.V. Ramana;Dasgupta, A.;Sharma, K.V.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • The performance of the crossover system of a centrifugal compressor stage consisting of static components of $180^{\circ}$ U-bend, return channel vanes and exit ducting with a $90^{\circ}$ bend is investigated. This study is confined to the assessment of performance of the crossover system by varying the shape of the return channel vanes. For this purpose two different types of Return Channel Vanes (RCV1 and RCV2) were experimentally investigated. The performance of the crossover system is discussed in terms of total pressure loss coefficient, static pressure recovery coefficient and vane surface pressure distribution. The experimentation was carried out on a test setup in which static swirl vanes were used to simulate the flow at the exit of an actual centrifugal compressor impeller with a design flow coefficient of 0.053. The swirl vanes are connected to a mechanism with which the flow angle at the inlet of U-bend could be altered. The measurements were taken at five different operating conditions varying from 70% to 120% of design flow rate. On an overall assessment RCV1 is found to give better performance in comparison to RCV2 for different U-bend inlet flow angles. The performance of RCV2 was verified using numerical studies with the help of a CFD Code. Three dimensional sector models were used for simulating the flow through the crossover system. The turbulence was predicted with standard k-$\varepsilon$, 2-equation model. The iso-Mach contour plots on different planes and development of secondary flows were visualized through this study.