• Title/Summary/Keyword: surface code

Search Result 995, Processing Time 0.036 seconds

Development of Nd-Yag Laser Marking System for Cylinderical Parts (Nd-Yag 레이저를 이용한 원통 형상 표면 마킹 시스템 개발)

  • Lee, Se-Han;Kang, Jae-Gwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.70-75
    • /
    • 2010
  • In this paper, laser marking systems dedicated to cylinderical parts was developed. We first develop the marking device which consists of Nd-Yag laser, galvano scanner and additional rotational axis, then develop algorithm for supporting the digital image with bmp data format. Additional rotational axis is so attached as to rotate the cylinderical parts for marking its whole surface. The image is separated into line by line and the separated line image is sent to galvano scanner while rotating the additional axis simultaneously. CxImage library, famous open source code, is employed for the image processing. The developed method was tested with various images and shows that it reduces marking time significantly without reducing marking quality.

A Study on Construction of Automatic Inspection System for Welding Flaws (용접결함 검사 자동화 시스템 구축에 관한 연구)

  • Kim, Chang-Hyun;Yu, Hong-Yeon;Hong, Sung-Hoon;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.37-42
    • /
    • 2007
  • The purpose of this research is stability estimation of plant structure through classification and recognition about welding flaw in SWP(Spiral Welding Pipe). And, In this research, we used nondestructive test based on ultrasonic test as inspection method, and made up 2-axes inspection robot in order to control of ultrasonic probe on the SWP surface, and programmed to image processing and probabilistic neural network(PNN) classifying code by MATLAB programming. Through this process, we proved efficiency on the system of SWP stability Estimation.

Temperature Measurement Method with Radiation Correction for Very High Temperature Gas (복사 간섭 보정을 통한 초고온 가스 온도 측정 방법)

  • Kim, Chan-Soo;Hong, Sung-Deok;Seo, Dong-Un;Kim, Yong-Wan;Lee, Won-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2059-2063
    • /
    • 2008
  • When a thermocouple is placed in a high temperature gas-flow stream, the measured temperature could be biased from the true gas temperature due to a large radiation heat loss from a thermocouple surface to its surroundings. In this study, two thermocouples of unequal diameters with 1/8 inch and 1/16 inch are used to correct the radiation effect. The method is called the reduced radiation error (RRE). The preliminary test results show that the radiation and the sheath conduction cannot be negligible for the gas temperature measurement. To minimize the sheath conduction effect, all the thermocouples will have a grounded junction and 1/8 inch thermocouple will be replaced with 1 mm thermocouples. In addition, the computational fluid dynamics code analysis shows that there is a negligible temperature difference between the positions where the thermocouples were installed.

  • PDF

Design of Pitot-Tube Configuration Using CFD Analysis and Optimization Techniques (CFD 해석 및 최적화 기법을 이용한 피토관 형상설계)

  • Kim, Do-Jun;Cheon, Young-Seong;Myong, Rho-Shin;Park, Chan-Woo;Cho, Tae-Hwan;Park, Young-Min;Choi, In-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.392-399
    • /
    • 2008
  • Accurate measurement of speed and altitude of flying vehicles in air data system remains a critical technical issue. A highly reliable Pitot-static probe is required to obtain air data such as total pressure and static pressure. In this study, an analysis of the characteristics of flowfield around the Pitot-static probe was performed by using a Navier-Stokes CFD code. In addition, for the purpose of finding an optimal configuration, a technique based on the response surface method is applied to the problem with design parameters including shape of the nose section and cone angle. It is shown that the optimal configuration fulfills the MIL specification in wider range of high angles of attack.

Rudder Gap Cavitation Suppression Using Gap Flow Blocking Devices

  • Oh, Jung-Keun;Lee, Chang-Min;Lee, Hee-Bum;Rhee, Shin-Hyung;Suh, Jung-Chun;Kim, Hyo-Chul
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.4
    • /
    • pp.20-31
    • /
    • 2008
  • Development of rudder gap flow blocking device for lift augmentation and cavitation suppression is presented. In order to verify the performance of this device, cavitation visualization and surface pressure measurements were carried out in a cavitation tunnel. Numerical simulations were conducted using a computational fluid dynamics code for more rigorous verification. The new rudder system is equipped with cam devices, which effectively close the gap between the horn/pintle and movable wing parts. The experimental and computational results show that the proposed rudder system is superior to the conventional rudder systems in terms of the lift augmentation and cavitation suppression.

The Inverse Design Technique of Propeller Blade Sections Using the Modified Garabedian-McFadden Method (Modified Garabedian-McFadden 방법을 이용한 프로펠러 날개 단면의 역설계 기법)

  • C.M. Jung;J.K. Cho;W.G. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.28-36
    • /
    • 1999
  • An efficient inverse design method based on the MGM(Modified Garabedian-McFadden) method has been developed. The 2-D Navier-Stokes equations are solved for obtaining the surface pressure distributions and coupled with the MGM method to perform the inverse design. The MGM method is a residual-correction technique, in which the residuals are the difference between the desired and the computed pressure distribution. The developed code was applied to several airfoil shapes and the propeller. It has been found that they are well converged to their targeting shapes.

  • PDF

Evaluation of the Applicability of FRP Grouted Reinforcing Method for Rock Slopes (암반사면에서 FRP 보강 그라우팅 공법의 적용성 평가)

  • Kim, Seong-Chan;Lee, Dal-Won
    • Korean Journal of Agricultural Science
    • /
    • v.35 no.2
    • /
    • pp.213-223
    • /
    • 2008
  • The instability of rock slopes caused by heavy rainfall and soil mass sliding needs the preventable and reinforcing method. The most important factor for the stability is the shear strength available in the planar part of the failure surface, which shows that a progressive failure takes place and a reinforcing of rock slope using FRP grout is effectively available. In this study, a grouting bolting interval predictions by limit equilibrium analysis and Matlab mathematical computer codes in several cases is presented for FRP reinforced rock slope. The proposed mathematical computer code can be easily applied for seeking properly FRP grout intervals prior to design and execute a reinforcement of a rock slope in practice.

  • PDF

A Study on The Performance of Supersonic Cascade with The Nozzle Inlet Boundary

  • Shin, Bong-Gun;Jeong, Soo-In;Kim, Kui-Soon;Lee, Eun-seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.839-847
    • /
    • 2004
  • In this study, the flow characteristics within supersonic cascades are numerically investigated by using Fine Turbo, a commercial CFD code. Cascade flows are computed for three different inlet conditions. : a uniform supersonic inlet condition, a linear nozzle and a converging-diverging nozzle located in front of cascades. The effect of inlet conditions is compared and flow characteristics including shock patterns and shock-boundary layer interaction are analyzed. Also the effect of design parameters such as pitch-chord ratio, blade angle and blade surface curvature on the flow within supersonic cascades are studied.

  • PDF

A Study on Heat Transfer with Phase Change of N - Octadecane (N - Octadecane의 상변화 열전달현상에 관한 연구)

  • Kim, Y.;Hwang, T.Y.;Kim, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.138-145
    • /
    • 1989
  • Experimental and numerical analysis were performed to investigate the heat transfer phenomena during phase change. N-octadecane were used as a phase change material and TRUMP computer code was used as a numerical tool. Also, two quarter segment of cylinder shape was chosen as a vessel to simulate to this research. The major contribution factor on the solidus surface movement was environmental temperature and the effect of roller gap and material initial temperature were insignificant. Experimental and numerical results were generally in good agreement and the effect of the mesh size ($22{\times}22$ and $33{\times}33$) was negligible.

  • PDF

Simulation of Salinity in Iwon Estuary Lake using EFDC model (EFDC모형을 이용한 담수화호의 염분분포모의)

  • Jung, Ki-Woong;Seong, Chung-Hyun;Lee, Eun-Jeong;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1500-1504
    • /
    • 2010
  • 본 연구에서는 EFDC(Environmental Fluid Dynamics Code) 모형을 이용하여 이원 담수화호의 염분분포를 모의하였다. SMS(Surface Water Modeling System) 모형을 이용하여 담수호에 대한 격자망을 구성하였다. 격자체계는 직교좌표계를 사용하였으며, 전체 2,620개의 유효계산격자를 구성하여 모형에 적용하였다. 수위 및 유량에 대한 경계조건은 기상자료와 배수갑문 운용자료를 통해 구축하였으며, 초기조건은 수위 실측자료를 이용하였다. 담수호의 염분모의를 위한 모형의 경계 조건은 호내에 위치한 5개소의 실측자료를 이용하였으며, 유역에서의 유입수염분농도는 0.2 ppt, 방조제 외측으로부터의 유입수 염분농도는 해수조건(30 ppt)을 적용하였다. 염분분포 모의를 위해 2006년부터 2008년까지 3년동안의 염분농도 실측자료를 이용하여 보정과 검정을 실시한 결과, 대상 지역에 대해 EFDC 모형의 적용성이 있는 것으로 나타났다.

  • PDF