• Title/Summary/Keyword: surface chemical property

Search Result 693, Processing Time 0.029 seconds

A Study on the Surface Analysis of Plasma-Treated PET Film (플라즈마 처리된 PET 필름의 표면분석에 관한 연구)

  • Lim Kyung-Bum;Choi Hoon-Young;Lee Seok-Hyun;Lee Duck-Chool
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.12
    • /
    • pp.596-600
    • /
    • 2004
  • In this study, the surface properties of PET film were analyzed after plasma surface treatment. After plasma treatment of surface roughness and XPS were evaluated to analyze the chemical property, while the surface potential decay and surface resistance rate was measured to analyze the electric관 characteristic. When plasma discharge treatment was conducted for less than 10 minutes, the electrical insulating property was improved by evaporation of low molecular weight materials and cleaning of surface. However, when the treatment was conducted for more than 10 minutes, the insulating property was decreased due to excessive discharge energy. Analyses of chemical characteristics showed that 10-minute treatment resulted in increase of C-O and O=C-O bonds. However, when treated for more than 10 minutes. they were relatively decreased.

Nanofiltration of Dye Solutions Through Polyamide Composite Membranes

  • Jonggeon Jegal;Baek, Kyung-Sook;Lee, Kew-Ho
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 2002
  • Nanofiltration of aqueous dye solutions was carried out using polyamide (PA) nanofiltration (NF) composite membranes. The PA composite membranes were prepared by the interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC) on the surface of microporous polysulfone (PSf) ultrafi1tration (UF) membranes. After characterization in terms of their permeation performance and surface ionic property, they were used for the separation of dye solutions such as Direct Red 75, 80, 81, and Direct Yellow 8 and 27. The separation conditions were varied to study the factors affecting on the permeation performance of the membranes: different concentrations of dye solutions, operating temperature and time, and flow rate of a feed solution. The surface property of the membrane, especially its ionic property, as a function of operating time was examined with a zeta-potentiometer and the relationship between the surface chemistry of the membrane and its permeation properties was also studied.

The Effect of Electron Beam Irradiation on Chemical and Morphological Properties of Hansan Ramie Fibers

  • Lee, Jung Soon
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.430-436
    • /
    • 2013
  • The purpose of this study investigates the effects of electron beam(EB) irradiation on the chemical and morphological properties of Hansan ramie fiber. Hansan ramie fibers were irradiated with electron beam doses of 0, 1, 3, 5 and 10kGy. The effect of electron beam irradiation on the chemical components of fibers as well as the surface chemical and morphological properties were investigated using chemical component analysis methods based on TAPPI standards, XPS, and SEM. The results indicate that the surface layers can be removed under suitable EB irradiation doses. Alcohol-benzene extraction and lignin content increases gradually with an increase in EB irradiation and reaching a maximum at an EB dose of 3kGy, and decreases at 10kGy. The surface chemical changes measured by XPS corresponded to the chemical composition analysis results. The C1 peak and the O/C ratio decreased with the removal of the multi-layer and primary layer by EB irradiation. The SEM images show the inter-fibrillar structure etched by EB irradiation up to 5kGy. At 10kGy, the surface structure of the ramie fiber shows highly aligned and distinctive striations in a longitudinal direction. The removal of these exterior layers of the fiber was confirmed by changes in surface morphology as observed in SEM images.

Insulation Coating for non-oriented Silicon Steel Sheerts (무방향성 전기강판의 절연피막 코팅재)

  • 조남웅;장세기
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.6
    • /
    • pp.382-390
    • /
    • 1997
  • Good appearance of insulation coating is required for non-oriented silicon steel sheets, The property is influenced by both the chemical composition of coating solution and the species of resin. The composition of inorganic-organic coating was studied to obtain good surface quality for non-oriented silicon steel. The greenish degree of coating surface depended on $Cr^{3+}$ content in the coating layer, which was satisfied when chromate content was more than 54.60 wt. %, in the coating solution. The homogeneous pattern and roughness of the coating surface depended on spreading property of the resin. Surface appearance of the coating could be improved by using resin with good spreading property at the chemical composition of chromate 59.00 wt.%.. resin 34.23wt.%, and etyhylene glycol 6.67 wt.% without colloidal sillica.

  • PDF

Synthesis and Surface Characteristics of Novel Oligomeric Silane with Perfluoropolyether (과불소 폴리에테르 포함 새로운 실란형 올리고머의 합성과 표면 특성)

  • Park, Eun-Young;Lee, Sang-Goo;Ha, Jong-Wook;Park, In-Jun;Lee, Soo-Bok;Lee, Yong-Taek
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.397-402
    • /
    • 2008
  • Perfluoropolyether(PFPE) has been widely applied in industry because of its very excellent properties of very high contact angle and low surface energy, good lubricant property and antifouling property. But the difficulty to synthesize PFPE has limited the research on this field. In this study, the novel silicon-containing oligomer with perfluoropolyether moiety was synthesized, and the structure was characterized by $^{19}F$-NMR and $^1H$-NMR. The surface properties of contact angle, sliding angle, and soil release property were investigated. The results show that PFPE in this study can be utilized as an anti-smudge coating material because it shows lower sliding angle and better soil release property than commercial products.

Surface Treatment of Automotive Cast Parts of Magnesium Alloy

  • Sim, Yangjin;Kim, Jongmyung
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • The surface treatments. Chrome/Manganese and Modified Chrome Pickle, that are treated to improve the anti-corrosion property which is needed to increased the probability of prototype product enabled the sand cast Magnesium test specimens to have better corrosion resistance than non-treated one. Sand cast Magnesium specimens which was treated only with chemical conversion coating had same corrosion resistance with the Steel specimens plated by Zinc, and the another one that had the finishing treatment(painting) worked on the chemical surface treatment had the corrosion resistance property to meet to FPO-3 requirement. We also investigated the multiple finishing system(chemical surface treatment + 3 coating) to test the severe condition that magnesium should to endure.

In-situ modification of PVC UF membrane by SiO2 sol in the coagulation bath during NIPS process

  • Cheng, Liang;Xu, Zhen-Liang;Yang, Hu;Wei, Yong-Min
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.317-325
    • /
    • 2018
  • Polyvinyl chloride (PVC) ultrafiltration (UF) membrane was modified by silica sol in the coagulation bath during non-solvent induced phase separation (NIPS) process. The effects of silica sol concentrations on the morphology, surface property, mechanical strength and separation property of PVC UF membranes were systematically investigated. PVC membranes were characterized by Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), contact angle goniometry and tensile strength measurement. The results showed that silica had been successfully assembled on the surface of PVC UF membrane. With the increase of silica sol concentration in the coagulation bath, the morphologies of PVC UF membranes changed from cavity structure to finger-like pore structure and asymmetric cross-section structure. The hydrophilicity and permeability of PVC UF membranes were further evaluated. When silica sol concentration was 20 wt.%, the modified PVC membrane exhibited the highest hydrophilicity with a static contact angle of $36.5^{\circ}$ and permeability of $91.8(L{\cdot}m^{-2}{\cdot}h^{-1})$. The structure of self-assemble silica had significant impact on the surface property, morphology, mechanical strength and resultant separation performance of the PVC membranes.

Surface analysis of PET films by XPS and surface potential decay (XPS와 표면전위감소 통한 PET 필름의 표면분석)

  • Lim, K.B.;You, D.H.;Lee, B.J.;Lee, B.S.;Lee, S.H.;Shin, T.H.;Shin, P.K.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1682-1684
    • /
    • 2004
  • In this study, the surface properties of PET film were analyzed after plasma surface treatment. After plasma treatment of surface roughness and XPS were evaluated to analyze the chemical property, while the surface potential decay and surface resistivity was measured to analyze the electrical characteristic. When plasma discharge treatment was conducted for less than 10 minutes, the electrical insulating property was found to be improved through evaporation of low molecular weight materials and cleaning of surface. However, when the treatment was conducted for more than 10 minutes, the insulating property was decreased due to excessive discharge energy. Analysis of chemical characteristics showed that 10-minute treatment resulted in increase of C-O and O=C-O. However, when treated for more than 10 minutes, they were relatively decreased.

  • PDF

A Study on the Characteristics of IR/CR Rubber Blends by Surface Treatment with Chlorine (염소의 표면처리에 따른 IR 및 CR Blend의 특성 연구)

  • Park, Ji-Hye;Lee, Chang-Seop;Park, Hyun-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.749-754
    • /
    • 2010
  • In this study, rubber vulcanization property, change in physical property, morphology and chemical characteristics of blended rubber depending on various IR/CR ratio were investigated for the purpose of the improvement of material property and durability. The effect of surface treatment by chlorine on the friction coefficient was also studied with various conditions of surface treatment. In terms of vulcanization property, as the amount of CR content increased, the speed of cure was decreased, while the density of crosslinking stayed constant. It means hardness and modulus were increased as the CR content increased. It is related to change in cure property and mechanical strength was improved by the effect of crystallization reaction. In the aging property, as the CR content increases, the changed amount of basic properties were decreased, which acts as a reducing factor in change of aged property by complementing weak point in mechanical property. It was found that the degree of property change for surface treated samples were reduced. According to the microscopic result, the degree of surface dispersion on rubber blends was increased by increasing CR content. Rubber surface showed uniform direction in pattern with increased smoothness and luster by treatment with chlorine. The degree of rubber reforming was measured by the remaining amount of chlorine and the friction coefficient was dependent on the amount of chlorine combined with rubber. In the initial stage of surface treatment, from 10 to 40 phr, the friction coefficient of specimen was rapidly reduced. However, as the concentration of chlorine solution increased, the change in friction coefficient was decreased.