• Title/Summary/Keyword: surface areas

Search Result 2,917, Processing Time 0.034 seconds

Characteristics of Runoff and Groundwater Quality from a Pasture and Field (방목지와 초지의 지표수 및 지하수 수질 특성)

  • Choe, Jung-Dae;Choe, Ye-Hwan;Kim, Gi-Seong
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.175-186
    • /
    • 1995
  • Characteristics of runoff and groundwater qualities from a pasture and field were investigated. Flumes and monitoring wells were installed and water qualities of $NO_3$-N, TP and TKN were monitored from Aug. 1993 to Aug. 1994. Runoff from the pasture which was a sandy soil with cobbles mostly formed with seeping water at the bottom of it. But once overland flow occurred because of heavy rainfall, runoff increased sharply. $NO_3$-N concentration in pasture runoff was relatively stable ranging between 0.241-3.962mg/l. TP and TKN concentrations were stable but sharply increased once overland flow occurred. $NO_3$-N concentration in pasture groundwater was relatively stable regardless of depth of monitoring wells but TP and TKN concentrations were smaller in deeper wells. Runoff from the field which was flat and covered well with Sudan grass and surface residue was relatively small and $NO_3$-N, TP and TKN concentrations in runoff were stable and seemed unaffected by flow rate. $NO_3$-N concentration in field groundwater increased at the rate of 2.2mg/l per 100 m during a growing season as groundwater flows through the field. No significant differences in TP and TKN concentrations between the upper and lower areas in field groundwater were detected.

  • PDF

Cost-effective assessment of filter media for treating stormwater runoff in LID facilities (비용 효율적 강우유출수 처리를 위한 LID시설의 여재 평가)

  • Lee, Soyoung;Choi, Jiyeon;Hong, Jungsun;Choi, Hyeseon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.194-200
    • /
    • 2016
  • The impervious surface rate increased by urbanization causes various problems on the environment such as water cycle distortion, heat island effect, and non-point pollutant discharges. The Low Impact Development (LID) techniques are significantly considered as an important tool for stormwater management in urban areas and development projects. The main mechanisms of LID technologies are hydrological and environmental pollution reduction among soils, media, microorganisms, and plants. Especially, the media provides important functions on permeability and retention rate of stormwater runoff in LID facilities. Therefore, this research was performed to assess the pollutant removal efficiency for different types of media such as zeolite, wood chip, bottom ash, and bio-ceramic. All media show high pollutant removal efficiency of more than 60% for particulate materials and heavy metals. Double layered media is more effective in reducing heavy metals by providing diverse sizes of micro-pores and macro-pores compared to the single layered media. The results recommend the use of different sizes of media application is more cost-effective in LID than a single size of media. Furthermore, soluble proportion of total heavy metal in the stormwater is an important component in proper media selection and arrangement.

Integrated Eco-Engineering Design for Sustainable Management of Fecal Sludge and Domestic Wastewater

  • Koottatep, Thammarat;Polprasert, Chongrak;Laugesen, Carsten H.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • Constructed wetlands and other aquatic systems have been successfully used for waste and wastewater treatment in either temperate or tropical regions. To treat waste or wastewater in a sustainable manner, the integrated eco-engineering designs are explained in this paper with 2 case studies: (i) a combination of vertical-flow constructed wetland (CW) with plant irrigation systemfor fecal sludge management and (ii) integrated CW units with landscaping at full-scale application for domestic wastewater treatment. The pilot-scale study of fecal sludge management employed 3 vertical-flow CW units, each with a dimension of $5{\times}5{\times}0.65m$ (width ${\times}$ length ${\times}$ media depth) and planted with cattails (Typha augustifolia). At the solid loading rate of 250 kg total solids (TS)/$m^2.yr$ and a 6-day percolate impoundment, the CW system could achieve chemical oxygen demand (COD), TS and total Kjeldahl nitrogen (TKN) removal efficiencies in the range of 80 - 96%. The accumulated sludge layers of about 80 - 90 cm was found at the CW bed surface after operating the CW units for 7 years, but no clogging problem has been observed. The CW percolate was applied to 16 irrigation Sunflower plant (Helianthus annuus) plots, each with a dimension of $4.5{\times}4.5m$ ($width{\times}length$). In the study, the CW percolate were fed to the treatment plots at the application rate of 7.5 mm/day but the percolate was mixed with tap water at different ratio of 20%, 80% and 100%. Based on a 1-year data of 3-crop plantation were experimented, the contents of Zn, Mn and Cu in soil of the experimental plots were found to increase with increasing in CW percolate ratios. The highest plant biomass yield and oil content of 1,000 kg/ha and 35%, respectively, were obtained from the plots fed with 20% or 50% of the CW percolate, whereas no accumulation of heavy metals in the plant tissues (i.e. leaves, stems and flowers) of the sunflower is found. In addition to the pilot-scale and field experiments, a case study of the integrated CW systems for wastewater treatment at Phi Phi Island (a Tsunami-hit area), Krabi province, Thailand is illustrated. The $5,200-m^2$ CW systems on Phi Phi Island are not only for treatment of $400m^3/day$ wastewater from hotels, households or other domestic activities, but also incorporating public consultation in the design processes, resulting in introducing the aesthetic landscaping as well as reusing of the treated effluent for irrigating green areas on the Island.

  • PDF

Investigation of Soil Physico-chemical Properties in Saemangeum Reclaimed Tidal Land in Korea

  • Ahn, Byung-Koo;Lim, Yeon-Yi;Ko, Do-Young;Lee, Chang-Kyu;Kim, Jin-Ho;Song, Young-Ju;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.4
    • /
    • pp.347-354
    • /
    • 2016
  • This study was conducted to investigate the physical and chemical properties of soils in Saemangeum reclaimed lands. The investigated areas were total 5,020 ha which included 220 ha for Agricultural Life site, 2,450 ha for Tourism & Leisure site, 1,130 ha for Industrial & Research site, 820 ha for Bioenergy crop production site, and 400 ha for Rural City site. Soil samples consisting of the upper 20 cm from the surface were collected in every $200m{\times}500m$ of the each site in March and September, 2015. Particle size distribution of soils in the reclaimed land was 83.2% sand, 8.6% silt and 8.2% clay in average. Soil texture was distributed as 40.8% sandy soil, 35.5% loamy sand, and 19.7% sandy loam. Based on the investigation of soil chemical properties conducted in March, 2015, soil pH, electrical conductivity of a saturated soil paste extract (ECe), and exchangeable (Exch.) $K^+$ and $Mg^{2+}$ concentrations were higher than those of the optimum levels for upland soil, whereas soil organic matter content, available (Avail.) phosphate concentration, and Exch. $Ca^{2+}$ concentration were lower than those of the optimum ranges. Depending on the results of the soil chemical properties measured in September, 2015, soil pH, ECe, and Exch. $K^+$ concentration were higher than those of the optimum levels, but soil organic matter, Avail. phosphate, and Exch. $Ca^{2+}$ concentration were lower than the optimum ranges. In addition, distribution of sodic soil ranged between 41.4% and 50.0%, and saline soils were from 16.4 to 31.8%. Soils with pH values above 7.0 increased from 15.3% in March to 35.2% in September. Soils with ECe values over $4.8dS\;m^{-1}$ increased from 45.6% to 50.7%, whereas soils with the values below $2.0dS\;m^{-1}$ decreased from 42.8% to 36.9%.

A Study on the Smart Maritime Traffic Safety Monitoring System Based on AI & AR (AI와 AR기반의 스마트 해상교통안전모니터링 시스템에 관한 연구)

  • Kim, Won-Ouk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.642-648
    • /
    • 2019
  • Vessels sail according to the COLREG to prevent a collision. However, it is difficult to apply COLREG under special situation as heavy traffic, at this time personal skills of the operator are required. In this case, traffic control is required through the maritime traffic monitoring system. Therefore, maritime traffic management is globally implemented by VTS. In this system, VTS of icer uses the VTS system to assess risks and recommends possible safety operation to vessels with radio systems. This study considers that the risk analysis method with AI (Artificial Intelligence) technology from the operator's aspect. In addition, the research explains the Maritime Traffic Safety Monitoring System, Including AR (Augmented Reality) technology to increase vessel control efficiency. This system is able to predict hazards and risk priorities, and it leads to sequential elimination of dangerous situations. Especially, the hazard situations can be analyzed from operator's perspective of each vessel instead of the VTS officer's aspect, which is more practical than the conventional method. Furthermore, the result of analysis enables to comprehend quantitative hazardous areas and support recommended routes to avoid a collision. As a result, I firmly believe that the system will support to prevent a collision in complex traffic waters. In particular, it could be adopted as a collision prevention system for Maritime Autonomous Surface Ship, which occupies a significant proportion in Maritime 4th industrial revolution.

Experimental Study on the Pressure Characteristics in the Cupping Therapy (부항요법(附缸療法)의 압력특성에 관한 실험적 연구)

  • Kim, Yang-Joong;Kim, Do-Ho;Yeom, Seung-Chul;Lim, Byung-Chuel;Choi, Youn-Sung;Lee, Geon-Hui;Kim, Hyung-Soo;Lee, Jai-Kyoo;Lee, Geon-Mok
    • Journal of Acupuncture Research
    • /
    • v.25 no.1
    • /
    • pp.121-130
    • /
    • 2008
  • Objectives : Cupping therapy is a stimulation therapy similar to acupuncture and moxibustion with effects that differ depending on the degree of stimulus. To make the strength of the skin objective in cupping therapy for this study, we measured negative pressure in the cupping jar and calculated the expansion rate of the skin. Subjects and Methods : In this study, we experimented with cupping therapy jars made for sale and used in clinics. We studied the pressure in the jars and the changes on the skin surface by measuring properties. We used commercial jars of four different volumes and diameters and tried to discover the properties on the size of the jar. Results : The results of experiment with the cupping therapy are as follows: 1. The lowest pressure in a jar was measured at $-600{\sim}610mmHg$, and the number of operating of vacuum pump for reaching lowest pressure was increased recording where the volume of the jar would be big, but the lowest pressure was not increased recording where the size of that would be big. 2. As the vacuum pump continued to operate, the pressure gradient in the jar got smaller which shows that the expansion rate of the skin was not linear. The pressure gradient shows different operational numbers on the vacuum pump near 0mmHg/operation unrelated to jar volume. 3. When negative pressure worked on the jar, air in the jar decreased. The percentage of air gradually reduced as the negative pressure acted in the jar. For example, the percentage of skin was 37-66% when the negative pressure, reatched -500mmHg. According to out results, different test areas generate different percentages of air in the jar, presumably related to skin elasticity. This phenomenon was most pronounced with the smallest jars. 4. At -500mmHg, the expansion rate of the skin was 1.57-1.9 on the abdomen, and $1.52{\sim}1.68$ on the back. The expansion rate of the skin appeared greater when the jar was relatively small, and it appeared smaller when the jar volume was relatively large relatively.

  • PDF

Finite element analysis of peri-implant bone stresses induced by root contact of orthodontic microimplant (치근접촉이 마이크로 임플란트 인접골 응력에 미치는 영향에 대한 유한요소해석)

  • Yu, Won-Jae;Kim, Mi-Ryoung;Park, Hyo-Sang;Kyung, Hee-Moon;Kwon, Oh-Won
    • The korean journal of orthodontics
    • /
    • v.41 no.1
    • /
    • pp.6-15
    • /
    • 2011
  • Objective: The aim of this study was to evaluate the biomechanical aspects of peri-implant bone upon root contact of orthodontic microimplant. Methods: Axisymmetric finite element modeling scheme was used to analyze the compressive strength of the orthodontic microimplant (Absoanchor SH1312-7, Dentos Inc., Daegu, Korea) placed into inter-radicular bone covered by 1 mm thick cortical bone, with its apical tip contacting adjacent root surface. A stepwise analysis technique was adopted to simulate the response of peri-implant bone. Areas of the bone that were subject to higher stresses than the maximum compressive strength (in case of cancellous bone) or threshold stress of 54.8MPa, which was assumed to impair the physiological remodeling of cortical bone, were removed from the FE mesh in a stepwise manner. For comparison, a control model was analyzed which simulated normal orthodontic force of 5 N at the head of the microimplant. Results: Stresses in cancellous bone were high enough to cause mechanical failure across its entire thickness. Stresses in cortical bone were more likely to cause resorptive bone remodeling than mechanical failure. The overloaded zone, initially located at the lower part of cortical plate, proliferated upward in a positive feedback mode, unaffected by stress redistribution, until the whole thickness was engaged. Conclusions: Stresses induced around a microimplant by root contact may lead to a irreversible loss of microimplant stability.

The Ecological Characteristics of the Winter Cherry Bug Acanthocoris sordidus (Hemiptera) and the Effects of Colony Formation on its Potential as an Insect Pest (잠재해충 꽈리허리노린재(Acanthocoris sordidus, Coreidae, Hemiptera)의 무리군 형성에 따른 생태적 특성)

  • Kang, Chan Yeong;Ryu, Tae Hee;Kwon, Hye Ri;Yu, Yong Man;Youn, Young Nam
    • Korean journal of applied entomology
    • /
    • v.55 no.3
    • /
    • pp.235-243
    • /
    • 2016
  • The winter cherry bug, Acanthocoris sordidus (Thunberg), is an insect pest hat damages plants from Solanaceae and Convolvulaceae. The developmental period from egg to adult averages 76 days at $25^{\circ}C$. Adult egg-laying occurred irregularly via spawning, averaging 195 (up to 468) eggs per individual on the abaxial leaf surface of the host plant. Results of linear regression indicated that the lower developmental threshold temperature was $13.9^{\circ}C$ and the effective accumulated temperature was 526.3 DD. Data from a pepper field in 2015 indicated that overwintering adults first appeared during late June (daily average temperature = $25.7^{\circ}C$), reaching maximum density by early September. A choice test examining colonization preferences using a net cage and a Y-tube olfactometer revealed that females gravitated toward conspecifics (other females, males, or both), whereas males moved toward empty areas. Finally, we found that communal breeding results in a longer developmental period and higher eclosion rates than solitary breeding. Developmental periods and eclosion rates were also for colonies in a large space than for those in a small space. This outcome suggests that colonization effects on insect development are stronger in a smaller area.

Characteristics of Isotherm, Kinetic and Thermodynamic Parameters for the Adsorption of Acid Red 66 by Activated Carbon (활성탄에 의한 Acid Red 66의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.30-38
    • /
    • 2020
  • The kinetic and thermodynamic parameters of Acid Red 66, adsorbed by granular activated carbon, were investigated on areas of initial concentration, contact time, and temperature. The adsorption equilibrium data were applied to Langmuir, Freundlich, Temkin, Redlich-Peterson, and Temkin isotherms. The agreement was found to be the highest in the Freundlich model. From the determined Freundlich separation factor (1/n = 0.125 ~ 0.232), the adsorption of Acid Red 66 by granular activated carbon could be employed as an effective treatment method. Temkin's constant related to adsorption heat (BT = 2.147 ~ 2.562 J mol-1) showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo-second order model with good agreement. The results of the intraparticle diffusion equation showed that the inclination of the second straight line representing the intraparticle diffusion was smaller than that of the first straight line representing the boundary layer diffusion. Therefore, it was confirmed that intraparticle diffusion was the rate-controlling step. From thermodynamic experiments, the activation energy was determined as 35.23 kJ mol-1, indicating that the adsorption of Acid Red 66 was physical adsorption. The negative Gibbs free energy change (ΔG = -0.548 ~ -7.802 kJ mol-1) and the positive enthalpy change (ΔH = +109.112 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, respectively. The isosteric heat of adsorption increased with the increase of surface loading, indicating lateral interactions between the adsorbed dye molecules.

A Critical Review on Setting up the Concept, Timing and Mechanism of Tertiary Tilted Flexural Mode of the Korean Peninsula: A new hypothesis derived from plate tectonics ('신생대 제3기 경동성 요곡운동'의 개념, 시기, 기작에 관한 비판적 고찰: 판구조운동 기원의 새로운 가설)

  • Shin, Jaeryul;Hwang, Sangill
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.200-220
    • /
    • 2014
  • This study reexamines the old concept and reviews prevalent statements on Cenozoic vertical motions of the peninsula that have been uncritically repeated in our academia. The contents of this paper are redefinition of the notion, tilted flexure or warping, and a suggestion for a new time set and properties of the deformation, followed by a new model on its influencing factors and processes. In conclusion, the Cenozoic vertical motion of the Korean peninsula can be reified further with an epeirogenic movement of uplift in the east side-subsidence in the west side of the peninsula since the Neogene (23 Ma). However, the regional boundary for areas of uplift and subsidence is not likely in the Korean peninsula but broader farther to East China and the southern part of Russia. It can be best understood that mantle convection produced by subducting activities in the Western Pacific Subduction Zone causes the uplift and subsidence of earth surface around NE Asia. In addition, faultings in the upper lithosphere induced by in-situ plate boundary stresses accelerate regional uplift in the peninsula since the Quaternary. Controversies that are still standing such as current uplift movements along the western coast of the peninsula during the late Quaternary could be precisely discussed with future research providing detailed information on it.

  • PDF