• Title/Summary/Keyword: surface and interface

Search Result 2,782, Processing Time 0.031 seconds

Evaluation of soil-concrete interface shear strength based on LS-SVM

  • Zhang, Chunshun;Ji, Jian;Gui, Yilin;Kodikara, Jayantha;Yang, Sheng-Qi;He, Lei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.361-372
    • /
    • 2016
  • The soil-concrete interface shear strength, although has been extensively studied, is still difficult to predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with experimental data from direct shear tests.

Evaluation of Friction Properties between Geostrip/Sandpaper Interface (지오스트립/샌드페이퍼 계면에서의 마찰특성 평가)

  • Lim, Ji-Hye;Byun, Sung-Won;Jeon, Han-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.27-33
    • /
    • 2006
  • Frictional properties between geostrip and sand paper interface were estimated considering soil particle size also the friction coefficients and angles were determined with normal stress. Three kinds of geostrips of design strength 50, 70, 100 KN/m were used and 5 sandpapers of P100, P220, P320, P400, P600 were used also. Shear strength between geostrip and sand paper interface with design strength showed big difference and this is due to the uniform surface pattern of each geostrip when contact to sandpaper without regard to design strength. Shear strength of geostrip was increased with design strength and geostrips/P100 sandpaper interface showed the biggest value. Finally, all of geostrips showed the decrease phenomena of post-peak strength and this is due to the abrasion of geostrip surface by shear test.

  • PDF

The formation mechanism of grown-in defects in CZ silicon crystals based on thermal gradients measured by thermocouples near growth interfaces

  • Abe, Takao
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.402-416
    • /
    • 1999
  • The thermal distributions near the growth interface of 150nm CZ crystals were measured by three thermocouples installed at the center, middle (half radius) and edge (10nm from surface) of the crystals. The results show that larger growth rates produced smaller thermal gradients. This contradicts the widely used heat flux balance equation. Using this fact, it is confirmed in CZ crystals that the type of point defects created is determined by the value of the thermal gradient(G) near the interface during growth, as already reported for FZ crystals. Although depending on the growth systems the effective length of the thermal gradient for defect generation are varied, we defined the effective length as 10n,\m from th interface in this experiment. If the G is roughly smaller than 20C/cm, vacancy rich CZ crystals are produced. If G is larger than 25C/cm, the species of point defects changes dramatically from vacancies to interstitials. The experimental results after detaching FZ and CZ crystals from the melt show that growth interfaces are filled with vacancies. We propose that large G produces shrunk lattice spacing and in order to relax such lattice excess interstitials are necessary. Such interstitials recombine with vacancies which were generated at the growth interface, nest occupy interstitial sites and residuals aggregate themselves to make stacking faults and dislocation loops during cooling. The shape of the growth interface is also determined by te distributions of G across the interface. That is, the small G and the large G in the center induce concave and convex interfaces to the melts, respectively.

  • PDF

Recent Research Trend in Synthesis of Two-Dimensional Graphene through Interface Engineering (계면 제어를 통한 2차원 그래핀 성장의 최근 연구 동향)

  • Lee, Seung Goo;Lee, Eunho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.79-84
    • /
    • 2021
  • Graphene has been received a lot of attention as essential parts of future electronic and energy devices. Because of its extraordinary properties contributed from the atomic layer, the interface and surface engineering of graphene are promising approaches for realizing 2D materials-based high-performance devices. Herein, we summarize and introduce recent research trends of the synthesis of graphene through interface engineering for high-performance electronic and energy device applications, and then discuss the challenges and opportunities for achieving high-performance devices in next-generation electronics.

Determination of the interface heat transfer coefficient for hot-forming process of Ti-6Al-4V (Ti-6Al-4V 합금의 열간성형공정에 대한 계면열전달계수의 결정)

  • 염종택;임정숙;나영상;박노광;신태진;황상무;심인옥
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.299-302
    • /
    • 2003
  • The interface heat transfer coefficient was measured for non-isothermal bulk forming of Ti-6Al-4V. FE analysis and experiments were conducted. Equipment consisting of AISI H13 die was instrumented with thermocouples located at sub-surface of the bottom die. Die temperature changes were investigated in related to the process variables such as reduction, lubricant and initial die temperature. The calibration approach based on heat conduction and FE analysis using an inverse algorithm were used to evaluate the interface heat transfer between graphite-lubricated die and glass-coated workpiece. The coefficients determined determined were affected mainly by the contact pressure. The validation of the coefficients was made by the comparison between experimental data and FE analysis results.

  • PDF

A Study of Boundary and Surface on SnO2 Thin Films Grown by Different Oxygen Flow Gas (변화된 산소분압으로 증착된 SnO2 박막의 표면과 계면에 관한 연구)

  • Oh, Seok-Kyun;Shin, Chul-Wha;Jeong, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1096-1100
    • /
    • 2008
  • This report examines the variations on structural properties of $SnO_2$ thin films deposited by using thermal chemical vapor deposition techniques with different oxygen flow gas. TEM showed some of the interface to be atomically rough. The aspects of the boundary shape and growth behavior agree well with the theory of interface growth. The electron diffraction showed that the roughness was changed as the different oxygen flow gas increased. These measurement results suggested that the number of interface facet and abnormal grain growth were related oxygen flow gas.

Determination of Stress Intensity Factors for Bimaterial Interface Rigid Line Inclusions by Boundary Element Method (경계요소법을 이용한 접합재료 경계면의 직선균열형상의 강체 함유물에 대한 응력세기계수 결정)

  • Lee, Kang-Yong;Kwak, Sung-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.176-181
    • /
    • 2000
  • Stress intensity factors for a rigid line inclusion tying along a bimaterial interface are calculated by the boundary element method with the multiregion and double-Point techniques. The formula between the stress intensity factors and the inclusion surface stresses are derived. The numerical values of the stress intensity factors for the bimaterial interface rigid line inclusion in the infinite body are proved to be in good agreement within 3% when compared with the previous exact solutions. In the finite bimaterial systems, the stress intensity factors for the center and edge rigid line inclusions at interface are computed with the variation of the rigid line inclusion length and the shear modulus ratio under the biaxial and uniaxial loading conditions.

  • PDF

A comparative experimental study on the mechanical properties of cast-in-place and precast concrete-frozen soil interfaces

  • Guo Zheng;Ke Xue;Jian Hu;Mingli Zhang;Desheng Li;Ping Yang;Jun Xie
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.145-156
    • /
    • 2024
  • The mechanical properties of the concrete-frozen soil interface play a significant role in the stability and service performance of construction projects in cold regions. Current research mainly focuses on the precast concrete-frozen soil interface, with limited consideration for the more realistic cast-in-place concrete-frozen soil interface. The two construction methods result in completely different contact surface morphologies and exhibit significant differences in mechanical properties. Therefore, this study selects silty clay as the research object and conducts direct shear tests on the concrete-frozen soil interface under conditions of initial water content ranging from 12% to 24%, normal stress from 50 kPa to 300 kPa, and freezing temperature of -3℃. The results indicate that (1) both interface shear stress-displacement curves can be divided into three stages: rapid growth of shear stress, softening of shear stress after peak, and residual stability; (2) the peak strength of both interfaces increases initially and then decreases with an increase in water content, while residual strength is relatively less affected by water content; (3) peak strength and residual strength are linearly positively correlated with normal stress, and the strength of ice bonding is less affected by normal stress; (4) the mechanical properties of the cast-in-place concrete-frozen soil interface are significantly better than those of the precast concrete-frozen soil interface. However, when the water content is high, the former's mechanical performance deteriorates much more than the latter, leading to severe strength loss. Therefore, in practical engineering, cast-in-place concrete construction is preferred in cases of higher negative temperatures and lower water content, while precast concrete construction is considered in cases of lower negative temperatures and higher water content. This study provides reference for the construction of frozen soil-structure interface in cold regions and basic data support for improving the stability and service performance of cold region engineering.

Steady Simulations of Impeller-Diffuser Flow Fields in Turbocompressor Applications (터보 압축기 임펠러-디퓨저 운동장에 대한 정상상태 해석)

  • Nam, S.S.;Park, I.Y.;Lee, S.R.;Ju, B.S.;Hwang, Y.S.;In, B.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.405-412
    • /
    • 2005
  • Numerical and experimental investigations were conducted to assess the aerodynamic performance of several centrifugal compressors. In order to impose an appropriate physics at the interface between impeller and vaned diffuser numerically, two different techniques, frozen rotor and stage models, were applied and the simulation results were compared with the corresponding prototype test data. An equivalent sand-grain roughness height was utilized in the present computational study to consider a relative surface roughness effect on the stage performance simulated. From a series of investigations, it was found that the stage model is more suitable than the frozen rotor scheme for the steady interactions between impeller and diffuser in turbocompressor applications. It is supposed that the solution by frozen rotor scheme is inclined to overrate the non-uniformity of the flow fields. The predicted aerodynamic performance accounting for surface roughness effect shows favorable agreement with experimental data. Simulations based on the aerodynamically smooth surface assumption tend to overestimate the stage performance.

  • PDF

The Passivation of GaAs Surface by Laser CVD

  • Sung, Yung-Kwon;Song, Jeong-Myeon;Moon, Byung-Moo;Rhie, Dong-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1242-1247
    • /
    • 2003
  • In order to passivate the GaAs surface, silicon-nitride films were fabricated by using laser CVD method. SiH$_4$ and NH$_3$ were used to obtain SiN films in the range of 100∼300$^{\circ}C$ on p-type (100) GaAs substrate. To determine interface characteristics of the metal-insulator-GaAs structure, electrical measurements were performed such as C-V curves and deep level transient spectroscopy (DLTS). The results show that the hysteresis was reduced and interface trap density was lowered to 1,012 ∼ 1,013 at 100 ∼ 200$^{\circ}C$. According to the study of surface leakage current, the passivated CaAs has less leakage current compared to non-passivated substrate.