• 제목/요약/키워드: surface and interface

검색결과 2,778건 처리시간 0.033초

흰쥐 대구치의 치수강 노출 후 치유 및 형성과정에서 치수와 상아질 기질내의 교원질과 당단백의 분포에 관한 면역조직화학적 연구 (FORMATION OF EXTRACELLULAR MATRIX COMPONENTS DURING DEVELOPMENT AND REPAIR OF PERFORATION OF THE RAT DENTIN AND PULP)

  • 김병우;민병순
    • Restorative Dentistry and Endodontics
    • /
    • 제21권1호
    • /
    • pp.35-53
    • /
    • 1996
  • The development and repair requires the formation of new tissues comprised of various extracellular matrix components. The present study investigated the formation and distribution of the major ECM components such as type I collagen, type III collagen, fibronection, bone sialoprotein, and osteonection during development and repair. For developing observation. Sprague-Dawley rats weighing $27{\pm}1gm$ were sacrificed. For repair observation, Sprague-Dawley rats weighing $110{\pm}5gm$ were used. The pulp perforation were prepared on mesial surface of the maxillary first molar by using 1/2round bur. At 5 days after perforation, rats were sacrificed by perfusion with 3 % paroformaldehyde. The maxillary first molar region were cut, demineralized, dehydrated and embedded in paraffin. Immunostaining the ECM components was achieved by the avidin-biotin complex method. The results as follows : 1. Bright immunoreaction for fibronectin was present in the basement membrane at the inner epithelial-mesenchymal interface, especially concentrated in the blood vessel walls, cell membrane of odontoblasts, and initial predentin. 2. Type I and III collagen was observed in the newly formed pulp tissue, predentin, and its intensity increased as more of these components during repair. 3. Strong immunostaining for bone sialoprotein and osteonectin was found in dentin while no or weaker staining was observed loose connective tissue of the pulp. 4. These results suggest that develpment and repair is achieved through a series of cell differentiation and attachment by the specific ECM components.

  • PDF

The Structural and Electrical Properties of Bismuth-based Pyrochlore Thin Films for embedded Capacitor Applications

  • Ahn, Kyeong-Chan;Park, Jong-Hyun;Ahn, Jun-Ku;Yoon, Soon-Gil
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권2호
    • /
    • pp.84-88
    • /
    • 2007
  • [ $Bi_{1.5}Zn_{1.0}Nb_{1.5}O_7$ ] (BZN), $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMN), and $Bi_2Cu_{2/3}Nb_{4/3}O_7$ (BCN) pyrochlore thin films were prepared on $Cu/Ti/SiO_2/Si$ substrates by pulsed laser deposition and the micro-structural and electrical properties were characterized for embedded capacitor applications. The BZN, BMN, and BCN films deposited at $25\;^{\circ}C$ and $150\;^{\circ}C$, respectively show smooth surface morphologies and dielectric constants of about $39\;{\sim}\;58$. The high dielectric loss of the films deposited at $150\;^{\circ}C$ compared with films deposited at $25\;^{\circ}C$ was attributed to the defects existing at interface between the films and copper electrode by an oxidation of copper bottom electrode. The leakage current densities and breakdown voltages in 200 nm thick-BMN and BZN films deposited at $150\;^{\circ}C$ are approximately $2.5\;{\times}\;10^{-8}\;A/cm^2$ at 3 V and above 10 V, respectively. Both BZN and BMN films are considered to be suitable materials for embedded capacitor applications.

3차원 골격곡선을 이용한 가상혈관 탐색 방안 (Virtual Navigation of Blood Vessels using 3D Curve-Skeletons)

  • 박상진;박형준
    • 한국CDE학회논문집
    • /
    • 제22권1호
    • /
    • pp.89-99
    • /
    • 2017
  • In order to make a virtual endoscopy system effective for exploring the interior of the 3D model of a human organ, it is necessary to generate an accurate navigation path located inside the 3D model and to obtain consistent camera position and pose estimation along the path. In this paper, we propose an approach to virtual navigation of blood vessels, which makes proper use of orthogonal contours and skeleton curves. The approach generates the orthogonal contours and the skeleton curves from the 3D mesh model and its voxel model, all of which represent the blood vessels. For a navigation zone specified by two nodes on the skeleton curves, it computes the shortest path between the two nodes, estimates the positions and poses of a virtual camera at the nodes in the navigation zone, and interpolates the positions and poses to make the camera move smoothly along the path. In addition to keyboard and mouse input, intuitive hand gestures determined by the Leap Motion SDK are used as user interface for virtual navigation of the blood vessels. The proposed approach provides easy and accurate means for the user to examine the interior of 3D blood vessels without any collisions between the camera and their surface. With a simple user study, we present illustrative examples of applying the approach to 3D mesh models of various blood vessels in order to show its quality and usefulness.

Buffer층을 가진 유기 전기 발광 소자의 특성 (Characteristics of organic electroluminescent devices having buffer layers)

  • 이호식;고삼일;정택균;이원재;김태완;강도열
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.399-402
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic thin films have attracted lots of interests in large-area light-emitting display. One of the problems of such device is a lifetime, where a degradation of the cell is possibly due to an organic layers thickness, morphology and interface with electrode. In this study, light-omitting organic electroluminescent devices were fabricated using Alq$_3$(8-hydroxyquinolinate aluminum) and TPD(N,N'-diphenyl-N,N'-bis(3-methylphenyl(1-1\`-biphenyl]-4,4'-diamine). Where Alq$_3$ is an electron-transport and emissive layer, TPD is a hole-transport layer. The cell structure is ITO/TPD/Alq$_3$/Al and the cell is fabricated by vacuum evaporation method. In a measurement of current-voltage characteristics, we obtained a turn-on voltage at about 9 V. We also investigated stability of the devices using buffer layer with blend of PEI (Poly ether imide) and TPD by varying mot ratios between ITO and Alq$_3$. In current-voltage characteristics measurement, we obtained the turn-on voltage at about 6 V and observed an anomalous behavior at 3∼4 V. And we used other buffer layer of PEDT(3,4-pyrazino-3',4'-ethylenedithio-2,2',5,5'-tetrathiafulvalenium) with ITO/PEDT/TPD/Alq$_3$Al structure. We observed a surface morphology by AFM(Atomic Force Microscopy), UV/visible absorption spectrum, and PL(Photoluminescence) spectrum. We obtained the UV/visible absorption peak at 358nm in TPD and at 359nm in Alq$_3$, and the PL peaks at 410nm in TPD and at 510nm in Alq$_3$. We also studied EL spectrum in the cell structure of ITO/(TPD+PEI)/Alq$_3$/Al.

  • PDF

알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향 (The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel)

  • 김남규;김병철;정병훈;송상우;;강정윤
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.

자동차 차체용 TRIP강판의 저항 점용접부 Partial Interfacial Fracture 특성에 관한 연구 (Characterization of Partial Interfacial Fracture on Resistance Spot-Welded TRIP Steels for Automotive Applications)

  • 최철영;김인배;김양도;박영도
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.136-145
    • /
    • 2012
  • Resistance spot welding of TRIP780 steels was investigated to enhance understanding of weld fracture mode after tensile shear testing (TST) and L-shape tensile testing (LTT). The main failure mode for spot welds of TRIP780 steels was partial interfacial fracture (PIF). Although PIF does not satisfy the minimum button diameter (4${\surd}$t) for acceptable welds, it shows enough load carrying capacity of resistance spot welds for advanced high strength steels. In the analysis of displacement controlled L-shape tensile test results, cracks initiated at the notch of the faying surface and propagated through the interface of weldments, and finally, cracks change path into the sheet thickness direction. Use of the ductility ratio and CE analysis suggested that the occurrence of PIF is closely related to high hardness and brittle welds, which are caused by fast cooling rates and high chemical compositions of TRIP steels. Analysis of the hold time and weld time in a welding schedule demonstrated that careful control of the cooling rate and the size of a weld nugget and the HAZ zone can reduce the occurrence of PIF, which leads to sound welds with button fractures (BFs).

Atomic Layer Deposited ZrxAl1-xOy Film as High κ Gate Insulator for High Performance ZnSnO Thin Film Transistor

  • Li, Jun;Zhou, You-Hang;Zhong, De-Yao;Huang, Chuan-Xin;Huang, Jian;Zhang, Jian-Hua
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.669-677
    • /
    • 2018
  • In this work, the high ${\kappa}$ $Zr_xAl_{1-x}O_y$ films with a different Zr concentration have been deposited by atomic layer deposition, and the effect of Zr concentrations on the structure, chemical composition, surface morphology and dielectric properties of $Zr_xAl_{1-x}O_y$ films is analyzed by Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and capacitance-frequency measurement. The effect of Zr concentrations of $Zr_xAl_{1-x}O_y$ gate insulator on the electrical property and stability under negative bias illumination stress (NBIS) or temperature stress (TS) of ZnSnO (ZTO) TFTs is firstly investigated. Under NBIS and TS, the much better stability of ZTO TFTs with $Zr_xAl_{1-x}O_y$ film as a gate insulator is due to the suppression of oxygen vacancy in ZTO channel layer and the decreased trap states originating from the Zr atom permeation at the $ZTO/Zr_xAl_{1-x}O_y$ interface. It provides a new strategy to fabricate the low consumption and high stability ZTO TFTs for application.

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

AI 이온 주입된 p-type 4H-SiC에 형성된 Ni/AI 오믹접촉의 전기 전도 특성 (Conduction Properties of NitAI Ohmic Contacts to AI-implanted p-type 4H-SiC)

  • 주성재;송재열;강인호;방욱;김상철;김남균;이용재
    • 한국전기전자재료학회논문지
    • /
    • 제22권9호
    • /
    • pp.717-723
    • /
    • 2009
  • Ni/Al ('/' denotes deposition sequence) contacts were deposited on Al-implanted 4H-SiC for ohmic contact formation, and the conduction properties were characterized and compared with those of Ni-only contacts. The thicknesses of the Ni and Al thin film were 30 nm and 300 nm, respectively, and the films were sequentially deposited bye-beam evaporation without vacuum breaking. Rapid thermal anneal (RTA) temperature was varied as follows : $840^{\circ}C$, $890^{\circ}C$, and $940^{\circ}C$. The specific contact resistivity of the Ni contact was about $^{\sim}2\;{\pm}\;10^{-2}\;{\Omega}{\cdot}cm^2$, However, with the addition of Al overlayer, the specific contact resistivity decreased to about $^{\sim}2\;{\pm}\;10^{-4}\;{\Omega}{\cdot}cm^2$, almost irrespective of RTA temperature. X-ray diffraction (XRD) analysis of the Ni contact confirmed the existence of various Ni silicide phases, while the results of Ni/Al contact samples revealed that Al-contaning phases such as $Al_3Ni$, $Al_3Ni_2$, $Al_4Ni_3$, and $Ab_{3.21}Si_{0.47}$ were additionally formed as well as the Ni silicide phases. Energy dispersive spectroscopy (EDS) spectrum showed interfacial reaction zone mainly consisting of Al and Si at the contact interface, and it was also shown that considerable amounts of Si and C have diffused toward the surface. This indicates that contact resistance lowering of the Ni/Al contacts is related with the formation of the formation of interfacial reaction zone containing Al and Si. From these results, possible mechanisms of contact resistance lowering by the addition of Al were discussed.

Review of the Silicon Oxide and Polysilicon Layer as the Passivated Contacts for TOPCon Solar Cells

  • Mengmeng Chu;Muhammad Quddamah Khokhar;Hasnain Yousuf;Xinyi Fan;Seungyong Han;Youngkuk Kim;Suresh Kumar Dhungel;Junsin Yi
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.233-240
    • /
    • 2023
  • p-type Tunnel Oxide Passivating Contacts (TOPCon) solar cell is fabricated with a poly-Si/SiOx structure. It simultaneously achieves surface passivation and enhances the carriers' selective collection, which is a promising technology for conventional solar cells. The quality of passivation is depended on the quality of the tunnel oxide layer at the interface with the c-Si wafer, which is affected by the bond of SiO formed during the subsequent annealing process. The highest cell efficiency reported to date for the laboratory scale has increased to 26.1%, fabricated by the Institute for Solar Energy Research. The cells used a p-type float zone silicon with an interdigitated back contact (IBC) structure that fabricates poly-Si and SiOx layer achieves the highest implied open-circuit voltage (iVoc) is 750 mV, and the highest level of edge passivation is 40%. This review presents an overview of p-type TOPCon technologies, including the ultra-thin silicon oxide layer (SiOx) and poly-silicon layer (poly-Si), as well as the advancement of the SiOx and poly-Si layers. Subsequently, the limitations of improving efficiency are discussed in detail. Consequently, it is expected to provide a basis for the simplification of industrial mass production.