• Title/Summary/Keyword: surface and interface

Search Result 2,772, Processing Time 0.034 seconds

Fracture Behavior of Ceramic Coatings Subjected to Thermal Shock (열충격에 의한 세라믹코팅재의 파괴거동)

  • Han, Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.39-43
    • /
    • 2003
  • An experimental study was conducted to develop and understanding of fracture behavior of ceramic thermal barrier coating when subjected to a thermal shock loading. The thermal loading was applied using a 1.5kW $CO_2$ laser. In the experiments, beam-shaped specimens were subjected to a high heat flux for 4sec and cooling of 7sec in air. The interface crack length was increased as the crack density, the surface pre-crack legth and the coating thickness were increased. The center surface crack length was increased as the maximum surface temperature got higher and the surface pre-crack length for shorter.

Surface Potential Properties of CuPc/Au Interface with Varying Temperature (CuPc/Au 구조에서의 온도 변화에 따른 계면에서의 표면전위 특성)

  • Lee, Ho-Shik;Park, Yong-Pil;Kim, Young-Pyo;Yu, Seong-Mi;Cheon, Min-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.492-493
    • /
    • 2007
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine(CuPc) based field-effect transistor with different metal electrode. So we need the effect of the substituent group attached to the phthalocyanine on the surface potential was investigated by Kelvin probe method with varying temperature of the substrate. We were obtained the positive shift of the surface potential for CuPc thin film. We observed the electron displacement at the interface between Au electrode and CuPc layer and we were confirmed by the surface potential measurement.

  • PDF

Corrosion Characteristics of TiN and ZrN Coated Orthodontic Brackets (TiN 및 ZrN 코팅된 교정용 브라켓의 부식특성)

  • Kim, W.G.;Kim, D.Y.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.4
    • /
    • pp.163-168
    • /
    • 2008
  • The dental orthodontic bracket requires good mechanical properties, such as elastic strength and frictional resistance, combined with a high resistance to corrosion. The objective of this study was to investigate the effects of TiN and ZrN coating on corrosion resistance of orthodontic brackets using various electrochemical methods. Brackets manufactured by Ormco Co. were used, respectively, for experiment. Ion plating was carried out for coatings of bracket using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen was observed with field emission scanning electron microscopy(FE-SEM), energy dispersive Xray spectroscopy(EDS) and electrochemical tester. The corrosion potential of the TiN and ZrN coated bracket was comparatively high. The current density of TiN and ZrN coated bracket was smaller than that of non-coated bracket in 0.9% NaCl solution. Pit nucleated at angle of bracket slot.

MORPHOLOGICAL CHARACTERISTICS OF NONLINEAR OPTICAL MOLECULES AT THE AIR/WATER INTERFACE

  • Lim, Sung-Taek;Park, Mi-Kyung;Shin, Dong-Myung;Kwon, Ohoak
    • Journal of Photoscience
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 1998
  • The texture change of non-linear optical molecules at the air/water interface was investigated as a function of surface pressure with Brewster angle microscopy. The texture change resulted from the aggregation of dye molecules is important to understand the film uniformity and grain formation process. The 4-Octadecylhydroxy-4'-nitrostilbene (OHNS) generated the small spots of size around 1$\mu$m. The spots exhibit high contrast with other film area and do not show angle dependent reflectivity change. It is interesting to observe that the size of the domain stays the same as the film pressure increases. At high surface pressure, the contrast ratio of domains becomes high, which means dense packing of OHNS. And, the size of domain grows. In the middle of domain, highly contrasted domains are formed. The first and the second order transitions of OHNS observed from surface pressure-area isotherm result from the two types of grains. The N,N-Dihexadecylcyanoaniline (DHCA) formed highly contrasted gains over entire region, and the grains are the double layers. The difference in Langmuir film of OHNS and DHCA at the air/water interface is consistent with the small tilt angle from the surface normal for OHNS and the large tilt angle for DHCA in the Langmuir-Blodgett films.

  • PDF

Elastic-Plastic Fracture Mechanics Analyses for Circumferential Part-Through Surface Cracks at the Interface Between Elbows and Pipes (직관과 곡관의 경계 용접부에 존재하는 원주방향 표면균열에 대한 탄소성 파괴역학 해석)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Jong-Sung;Jin, Tae-Eun;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.710-717
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions fur straight pipes.

Surface Compatibility and Electrochemical Behaviors of Zirconia Abutment for Prosthodontics (보철용 지르코니아 어버트먼트의 표면적합도와 전기화학적 거동)

  • Park, K.H.;Jeong, Y.H.;Kim, W.G.;Choe, H.C.;Kim, M.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.41-46
    • /
    • 2009
  • The fit between dental implant fixture and zirconia abutment is affected by many variables during the fabrication process by CAD/CAM program and milling working. The purpose of this study was to evaluate the surface compatibility and electrochemical behaviors of zirconia abutment for prosthodontics. Zirconia abutments were prepared and fabricated using zirconia block and milling machine. For stabilization of zirconia abutments, sintering was carried out at $1500^{\circ}F$ for 7 hrs. The specimens were cut and polished for gap observation. The gap between dental implant fixture and zirconia abutment was observed using field-emission scanning electron microscopy (FE-SEM). The hardness and corrosion resistance of zirconia abutments were observed with vickers hardness tester and potentiostat. The gap between dental implant fixture and zirconia abutment was $5{\sim}12{\mu}m$ for small gap, and $40{\sim}60{\mu}m$ for large gap. The hardness of zirconia surface was 1275.5 Hv and showed micro-machined scratch on the surface. The corrosion potentials of zirconia abutment/fixture was .290 mV and metal abutment/fixture was .280 mV, whereas $|E_{pit}-E_{corr}|$ of zirconia abutment/fixture (172 mV) was higher than that of metal abutment/fixture (150 mV). The corrosion morphology of metal abutment/fixture showed the many pit on the surface in compared with zirconia abutment/fixture.

Two-dimensional Chiral Honeycomb Structures of Unnatural Amino Acids on Au(111)

  • Yang, Sena;Jeon, Aram;Lee, Hee-Seung;Kim, Sehun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.191.1-191.1
    • /
    • 2014
  • Crystallization has become the most popular technique for the separation of enantiomers since the Pasteur's discovery. To investigate mechanism of crystallization of chiral molecules, it is necessary to study self-assembled structures on two-dimensional surface. Here, we have studied two-dimensional self-assembled structures of an unnatural amino acid, (S)-${\beta}$-methyl naphthalen-1-${\gamma}$-aminobutyric acid (${\gamma}^2$-1-naphthylalanine) on Au(111) surface at 150 K using scanning tunneling microscopy (STM). At initial stage, we found two chiral honeycomb structures which are counter-clockwise and clockwise configurations in one domain. The molecules are arranged around molecular vacancies, dark hole. By further increasing the amounts of adsorbed ${\gamma}^2$-1-naphthylalanine, a well-ordered square packed structure was observed. In addition, we found the other structure that molecules were trapped in the pore of the hexagonal molecular assembly.

  • PDF

The Surface Properties using various separating materials of dental gypsum products (다양한 석고 분리제를 이용한 치과용 석고의 표면 특성에 관한 연구)

  • Sung, Hwan-Kyung;Lee, Gyu-Sun;Hwang, Jae-Sun
    • Journal of Technologic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • Gypsum products are used for the preparation of stone casts of oral and maxillofacial structures and as important adjuncts to dental laboratory operations involved in the production of dental prosthesis. Accuracy and dimensional stability over time are properties of concern in fixed prothodontics. Gypsum products used in denstry are a form calcium sulfate hemihydrate and are classified as 1 of 5 types according to International Standard Organization(ISO) 6873. All die materials exhibit some dimensional change during setting, but expansion and contraction during setting and dimensional changes in response to varations in temperature and the water-powder ratio must be minimal. Although numerous investigators have studied the properties of die materials, several products have been introduced recently with manufacturer claims of superior dimensional stalility. The aim of this study was to determine the surface properties using various separating materials of dental gypsum products The results were as follows 1. In the comparison of first and second plaster distances before separation in different separating agent, there was no significant difference except using Trio separating agent. The interface using Trio separating agent forms like to pores. 2. In the comparison of first and second plaster distances after separation in different separating agent, there was significant difference. The interface of plasters using WD-40, Trio and Vaseline was showed some gaps. Each they were measured at average 7.97 $\pm$ 2.07 ${\mu}m$, 63.09 $\pm$ 23.25 ${\mu}m$, 27.59 $\pm$ 4.19 ${\mu}m$. 3. In the comparison of the surface, the surface of control sample(using none seperating agent) showed irregular properties and the surface using Trio and Vaseline become wrinkled. Specially the surface using Vaseline was showed shiny properties. But the surface using MAGIC SEP, Plaster seperating agent, WD-40 showed regular properties.

  • PDF

Effects of TiN/Ti Multilayer Coating on the Ti-30Ta-xZr Alloy Surface (Ti-30Ta-xZr 합금의 표면에 TiN/Ti 다층막코팅효과)

  • Kim, Y.U.;Jeong, Y.H.;Cho, J.Y.;Choe, H.C.;Vang, M.S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.161-168
    • /
    • 2009
  • Effects of TiN/Ti multilayer coating on the Ti-30Ta-xZr alloy surface were studied by using various experiments. The Ti-30Ta containing Zr (5, 10 and 15 wt%) were melted 10 times to improve chemical homogeneity by using a vacuum furnace. And then samples were homogenized for 24 hrs at $1000^{\circ}C$. The specimens were prepared for TiN/Ti coating by cutting and polishing. The prepared specimens were coated with TiN/Ti multilayers by using DC magnetron sputtering method. The analyses of coated surface and coated layer were carried out by field emission scanning electron microscope(FE-SEM), EDX, and X-ray diffractometer(XRD). From the microstructure and XRD analysis of Ti-30Ta-xZr alloys, The equiaxed structure was changed to needle-like structure with increasing Zr content. And $\alpha$-peak and elastic modulus increased as Zr content increased. The $\alpha$ and $\beta$ phase predominantly were found in the specimen containing high Zr content. According to the analysis of TiN/Ti coating layer, the surface defects and structures of Ti-30Ta-xZr were covered with TiN/Ti coating layer and surface roughness decreased.

Surface Preparation and Activation Only by Abrasion and Its Effect on Adhesion Strength

  • Ali Gursel;Salih Yildiz
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.101-107
    • /
    • 2022
  • Adhesive joints have many advantages such as weight savings, corrosion and fatigue resistance and now developed even withstand of high impact and dynamic loads. However, an adhesion has cumbersome and complicated surface preparation processes. The surface preparation step is critical in adhesive joint manufacturing in order to obtain the prescribed strength for adhesive joints. In this study, it was attempted to simplify and reduce the number of surface preparation steps, and abrasion and rapid adhesive application (ARAA) process is developed for an alternative solution. The abrasion processes are performed only for creating surface roughness in standard procedures (SP), although the abrasion processes cause surface activation itself. The results showed that there is no need the long procedures in laboratory or chemical agents for adhesion. After the abrasion process, the attracted and highly reactive fresh surface layer obtained, and its effect on bonding success is observed and analyzed in this research, in light of the essential physic and adhesion theories. Al 6061 aluminum adherends and epoxy-based adhesives were chosen for bonding processes, which is mostly used in light vehicle parts. The adherends were cleaned, treated and activated only with abrasion, and after the adhesive application the specimens were tested under quasi-static loading. The satisfied ARAA results were compared with that of the specimens fabricated by the standard procedure (SP) of adhesion processes of high impact loads.