• Title/Summary/Keyword: surface acts

Search Result 259, Processing Time 0.027 seconds

Effect of Secondary Electron Emission of Phosphor on the Plasma Display Panel Discharge

  • Song, Su-Bin;Park, Pil-Yong;Lee, Han-Yong;Sea, Jeong-Hyun;Kang, Kyung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.594-597
    • /
    • 2002
  • We studied the effect of secondary electron emission from the back plate of AC-PDP, on the ramp waveform driving of the system, using two-dimensional PDP cell discharge simulator. It is found that the secondary electron emission from back plate plays a significant role in getting a stable weak discharge during the ramping up of X-Y electrode voltage. This is because grounded address electrode acts as a cathode during the setup of surface charge, and the secondary electron emission from phosphor in the back plate must be large enough to accumulate surface charges on the dielectric layers without strong plasma discharge. We have concluded that the secondary electron emission coefficient(${\gamma}$) of phosphor, besides MgO, must be known to understand the characteristics of the PDP system. A few suggestions for improvement of the system is also made and tested.

  • PDF

Effect of Cu During Non-isothermal Hydrogen Reduction of $MoO_3$

  • Kim, Gil-Su;Kim, Dae-Gun;Oh, Sung-Tag;Suk, Myung-Jin;Kim, Young-Do
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1329-1330
    • /
    • 2006
  • The effect of Cu on the hydrogen reduction of $MoO_3$ powders was investigated by measuring the humidity change during a non-isothermal process of hydrogen reduction. The presence of Cu induced a shift in the reduction temperature and strongly affected the reduction processes of $MoO_3\rightarrowMo_4O_{11}\rightarrowMoO_2$, which comprised the contained chemical vapor transport of $MoO_x(OH)_2$. This study suggests that the surface of the Cu grains acts as a nucleation site for the reduction of $MoO_x(OH)_2$ to $MoO_2$ particles from $MoO_3$ or $Mo_4O_{11}$. Such an activated reduction process results in the deposition of Mo and $MoO_2$ particles on the surface of the Cu.

  • PDF

Investigation of Narrow Pore Size Distribution on Carbon Dioxide Capture of Nanoporous Carbons

  • Meng, Long-Yue;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3749-3754
    • /
    • 2012
  • Nanoporous carbons with a high specific surface area were prepared directly from thermoplastic acrylic resin as carbon precursor and MgO powder as template by carbonization over the temperature range, $500-1000^{\circ}C$. The effect of the carbonization temperature on the pore structure and $CO_2$ adsorption capacity of the obtained porous carbon was examined. The textural properties and morphology of the porous carbon materials were analyzed by $N_2/-196^{\circ}C$ and $CO_2/0^{\circ}C$ adsorption/desorption isotherms, SEM and TEM. The $CO_2$ adsorption capacity of the prepared porous carbon was measured at $25^{\circ}C$ and 1 bar and 30 bar. The specific surface area increased from 237 to $1251m^2/g$, and the total pore volumes increased from 0.242 to $0.763cm^3/g$ with increasing the carbonization temperature. The carbonization temperature acts mainly by generating large narrow micropores and mesopores with an average pore size dependent on the level of carbonization of the MgO-templated nanoporous carbons. The results showed that the MgO-templated nanoporous carbons at $900^{\circ}C$ exhibited the best $CO_2$ adsorption value of 194 mg/g at 1 bar.

Corrosion Inhibition Studies on Low Carbon Steel in Hydrochloric Acid Medium Using o-Vanillin-Glutamine Schiff Base

  • Thusnavis, G. Rexin;Archana, T.V.;Palanisamy, P.
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • The o-Vanillin - Glutamine Schiff base [2-Hydroxy-3-Methoxy BenzylidineCarbomyl) -2-Butanoic Acid] was examined for low carbon steel corrosion inhibition in acid media. Weight loss studies were carried out at three different temperatures to determine the inhibition efficiency (IE). Electrochemical impedance spectroscopy revealed that the charge transfer resistance controlled the corrosion reaction and Tafel polarization indicated that the Schiff base acts as mixed mode of inhibitor. SEM images were recorded for the surface morphology of the low carbon steel surface. DFT studies revealed corrosion control mechanisms using quantum chemical parameters such as EHOMO, ELUMO, energy gap (∆E), chemical Hardness (η), chemical Softness (σ), Electronegativity (χ), and the fraction of electron transferred (∆N), which is calculated using Gaussian software 09. The gas-phase geometry was fully optimized in the Density Functional Theory (DFT/B3LYP-6-31G (d)).The DFT results are in good agreement with the experimental results. All the results proved that the Schiff Base (2-Hydroxy-3-Metoxy BenzylidineCarbomyl) -2-Butanoic is a suitable alternative for corrosion inhibition of low carbon steel in acid media.

Azasugar-Containing Phosphorothioate Oligonucleotide (AZPSON) DBM-2198 Inhibits Human Immunodeficiency Virus Type 1 (HIV-1) Replication by Blocking HIV-1 gp120 without Affecting the V3 Region

  • Lee, Jinjoo;Byeon, Se Eun;Jung, Ju Yeol;Kang, Myeong-Ho;Park, Yu-Jin;Jung, Kyeong-Eun;Bae, Yong-Soo
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.122-129
    • /
    • 2015
  • DBM-2198, a six-membered azasugar nucleotide (6-AZN)-containing phosphorothioate (P = S) oligonucleotide (AZPSON), was described in our previous publication [Lee et al. (2005)] with regard to its antiviral activity against a broad spectrum of HIV-1 variants. This report describes the mechanisms underlying the anti-HIV-1 properties of DBM-2198. The LTR-mediated reporter assay indicated that the anti-HIV-1 activity of DBM-2198 is attributed to an extracellular mode of action rather than intracellular sequence-specific antisense activity. Nevertheless, the antiviral properties of DBM-2198 and other AZPSONs were highly restricted to HIV-1. Unlike other P = S oligonucleotides, DBM-2198 caused no host cell activation upon administration to cultures. HIV-1 that was pre-incubated with DBM-2198 did not show any infectivity towards host cells whereas host cells pre-incubated with DBM-2198 remained susceptible to HIV-1 infection, suggesting that DBM-2198 acts on the virus particle rather than cell surface molecules in the inhibition of HIV-1 infection. Competition assays for binding to HIV-1 envelope protein with anti-gp120 and anti-V3 antibodies revealed that DBM-2198 acts on the viral attachment site of HIV-1 gp120, but not on the V3 region. This report provides a better understanding of the antiviral mechanism of DBM-2198 and may contribute to the development of a potential therapeutic drug against a broad spectrum of HIV-1 variants.

Risk Evaluation of Monopotassium Phosphate (MKP) and Bentonite Application via the Mobility Reduction of Soil TNT and Heavy Metals (제일인산칼륨과 벤토나이트 처리를 통한 토양 내 TNT와 중금속 이동성 및 인체위해도 저감 기술)

  • Jung, Jae-Woong;Yu, Gihyeon;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.28-36
    • /
    • 2015
  • Simultaneous mobility reduction of explosives and heavy metals in an operational range by monopotassium phosphate (MKP) and bentonite spreading technology was investigated. Potassium ion and phosphate ion in MKP act as explosives sorption enhancer and insoluble heavy metal phosphate formation, respectively, while bentonite acts as the explosives adsorbent. Then, the decrease in surface water concentration of the pollutants and resulting risk reduction for local residents of the operational range, by MKP/bentonite application was estimated. Under untreated scenario, the noncancer hazard index (HI) exceeded unity on February, July and August, mainly due to 2,4,6-trinitrotoluene (TNT); however, MKP/bentonite treatment was expected to lower the noncancer hazard index by decreasing the surface water concentration of explosives and heavy metals (especially TNT). For example, on July, estimated surface water concentration and HI of TNT were 0.01 mg/L and 1.1, respectively, meanwhile the sorption coefficient of TNT was 3.9 mg1−nkg−1Ln. However, by MKP/bentonite treatment, the TNT sorption coefficient increased to 113.8 mg1−nkg−1Ln and the surface water concentration and HI decreased to about 0.002 mg/L and 0.2, respectively. Based on the result, it can be concluded that MKP/bentonite spreading is a benign technology that can mitigate the risk posed by the pollutants migration from operational ranges.

The Radiation Characteristics Improvement and Thickness Reduction of Base Station Antenna with Artificial Magnetic Conductor (인공 자기 도체를 이용한 기지국 안테나의 방사 특성 개선 및 두께 감소)

  • Son, Cheol-Hong;Ahn, Ji-Hwan;Chang, Ki-Hun;Yoon, Ji-Hwan;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1233-1242
    • /
    • 2009
  • In this paper, a Base Station Antenna(BSA) utilizing Artificial Magnetic Conductor(AMC) as reflector instead of common conductive plate to improve radiation characteristics and achieve low-profile is proposed. In the case of the conventional BSA on conductive surface which acts as a reflector, a secondary radiation is caused at the corner of the conductive surface, and it increases the back-lobe of the antenna, resulting in deteriorating the radiation characteristic of the conventional BSA. However, using the AMC, the back-lobe of the BSA can be largely reduced by the surface wave suppression. And the Side-Lobe Level(SLL) is also improved, resulting in preventing the service area overlapped. Furthermore, due to the $0^{\circ}$ reflection phase on AMC, the profile of the BSA can be also reduced.

The Properties of Passivation Films on Al2O3/SiNX Stack Layer in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지의 Al2O3/SiNX 패시베이션 특성 분석)

  • Hyun, Ji Yeon;Song, In Seol;Kim, Jae Eun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.5 no.2
    • /
    • pp.63-67
    • /
    • 2017
  • Aluminum oxide ($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surface. The quality of passivation layer is important for high-efficiency silicon solar cell. double-layer structures have many advantages over single-layer materials. $Al_2O_3/SiN_X$ passivation stacks have been widely adopted for high- efficiency silicon solar cells. The first layer, $Al_2O_3$, passivates the surface, while $SiN_X$ acts as a hydrogen source that saturates silicon dangling bonds during annealing treatment. We explored the properties on passivation film of $Al_2O_3/SiN_X$ stack layer with changing the conditions. For the post annealing temperature, it was found that $500^{\circ}C$ is the most suitable temperature to improvement surface passivation.

A Study on the Optimization of Polysilicon Solar Cell Structure (다결정 실리콘 태양전지 구조 최적화에 관한 연구)

  • Lee, Jae-Hyeong;Jung, Hak-Ki;Jung, Dong-Su;Lee, Jong-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.702-705
    • /
    • 2011
  • Poly-Si wafers with resistivity of 1 [${\Omega}$-cm[ and thickness of 50 [${\mu}m$] were used as a starting material. Various efficiency influencing parameters such as rear surface recombination velocity and minority carrier diffusion length in the base region, front surface recombination velocity, junction depth and doping concentration in the Emitter layer, BSF thickness and doping concentration were investigated. Optimized cell parameters were given as rear surface recombination of 1000 [cm/sec], minority carrier diffusion length in the base region 50 [${\mu}m$], front surface recombination velocity 100 [cm/sec], sheet resistivity of emitter layer 100 [${\Omega}/{\Box}$], BSF thickness 0.5 [${\mu}m$], doping concentration $5{\times}10^{19}\;cm^{-3}$. Among the investigated variables, we learn that a diffusion length of base layer acts as a key factor to achieve conversion efficiency higher than 19.8 %. Further details of simulation parameters and their effects to cell characteristics are discussed in this paper.

  • PDF

Front-side Texturing of Crystalline Silicon Solar Cell by Micro-contact Printing (마이크로 컨텍 프린팅 기법을 이용한 결정질 실리콘 태양전지의 전면 텍스쳐링)

  • Hong, Jihwa;Han, Yoon-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.841-845
    • /
    • 2013
  • We give a textured front on silicon wafer for high-efficiency solar cells by using micro contact printing method which uses PDMS (polydimethylsiloxane) silicon rubber as a stamp and SAM (self assembled monolayer)s as an ink. A random pyramidal texturing have been widely used for a front-surface texturing in low cost manufacturing line although the cell with random pyramids on front surface shows relatively low efficiency than the cell with inverted pyramids patterned by normal optical lithography. In the past two decades, the micro contact printing has been intensively studied in nano technology field for high resolution patterns on silicon wafer. However, this promising printing technique has surprisingly never applied so far to silicon based solar cell industry despite their simplicity of process and attractive aspects in terms of cost competitiveness. We employ a MHA (16-mercaptohexadecanoic acid) as an ink for Au deposited $SiO_2/Si$ substrate. The $SiO_2$ pattern which is same as the pattern printed by SAM ink on Au surface and later acts as a hard resist for anisotropic silicon etching was made by HF solution, and then inverted pyramidal pattern is formed after anisotropic wet etching. We compare three textured surface with different morphology (random texture, random pyramids and inverted pyramids) and then different geometry of inverted pyramid arrays in terms of reflectivity.