• Title/Summary/Keyword: surface activation

Search Result 1,422, Processing Time 0.033 seconds

A Smart Bench Press Machine: Automatic Weight Control Sensitive to User Tiredness

  • Kim, Jihun;Jo, Han-jin;Kim, Kiyoung;Ji, Hae-geun;Kim, Jaehyo
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.209-215
    • /
    • 2019
  • In order to provide a safe free-weight-training environment to people without workout trainers, we suggest a smart bench press machine with an automatic weight control system sensitive to user tiredness. Physical weight plates on the machine are replaced with a hydraulic cylinder as a press load and the cylinder knob is coupled with a step motor to change its tensile force automatically in-between lifting exercises. Three subjects participated to verify the usability of the smart bench press machine. They were asked to lift a 6-RM press load 10 times with 3 different lifting conditions: 1) no assistance, 2) a human assistance, and 3) the automatic weight control. All subjects were not able to complete the 10 sets without assistance due to tiredness, but they finished the full sets under the two assistive conditions. Average lifting speeds under the automatic weight control condition showed the most consistent level. Normalized quasi-tension data based on surface electromyogram signals of both Pectoralis Majors revealed that the subjects maintained the target muscle activation level above 50% but not more than 80% throughout the 10 sets. Therefore, the smart bench press machine is expected to both keep pace with the lifting exercise and reduce risk of injuries due to excessive muscle tensions.

Comparison of the Electromyographic Activity in the Lower Trapezius Muscle According to Four Different Types of Exercises in Healthy Adults

  • Seo, Gyeong Ju;Park, Ji Won;Kwon, Yonghyun
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.2
    • /
    • pp.134-139
    • /
    • 2019
  • Purpose: This study examined the most effective exercise while performing shoulder abduction below ninety degrees. Methods: Thirty two healthy individuals (17 males, 15 females) participated and performed four exercises, 1) Posterior fly, 2) Prone row, 3) Modified prone cobra, and 4) External rotation in the prone position. Surface electromyography (sEMG) was used to measure the electrical activities for the lower, middle and upper fiber of trapezius and serratus anterior. Results: A significant difference in the muscle activities of the upper/middle/lower trapezius and serratus anterior was observed among the three different positions in terms of the PF (posterior fly), PR (prone row), and MPC (modified prone cobra) (p<0.05). In post-hoc analysis, the activities of the lower and upper trapezius were significantly higher than those of the upper trapezius and serratus anterior (p<0.05). In addition, in ERP (external rotation in prone), there was a significant difference in each activity of the muscles. Post-hoc results indicated that the upper trapezius showed greater EMG activity than the other three muscles. Conclusion: External rotation in the prone position revealed the highest activation of the lower trapezius compared to upper trapezius muscle activity. This may be particularly useful in isolating the lower trapezius in cases where excessive scapular elevation is noted. Therefore, the most effective lower trapezius exercise should be performed below ninety degrees of shoulder abduction.

Micro-Structural and Electrochemical Properties of Activated Carbon Synthesized from Natural Bamboo (천연 대나무로부터 합성된 활성 탄소의 미세구조 및 전기화학적 특성)

  • YANG, DONG-CHEOL;KIM, SU-WON;CHOURASHIYA, M.G.;PARK, CHOONG-NYEON;PARK, CHAN-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.418-427
    • /
    • 2019
  • Activated carbon was synthesized from bamboo charcoal by KOH activation at various temperatures for electrochemical double layer capacitor applications. The micro-structural and surface properties of all the samples were characterized by X-ray diffraction, scanning electron microscopy and N2 adsorption/desorption isotherm method. The electrochemical properties of the activated bamboo charcoal were examined by cyclic voltammetry in the potential window of -1.0 to 0.2 V in 6 M KOH electrolyte at different scan rates. An electrode made from the sample activated with 7.5 M KOH and heat treated at $750^{\circ}C$ for 3 h gave a maximum capacitance of 553 F/g at 1 mV/s and 450 F/g at 10mV/s.

The Effects of Proprioceptive Neuromuscular Facilitation Applied to the Lifting on the EMG Activation of Contralateral Lower Extremity (고유수용성신경근촉진법의 들어올리기가 반대측 하지의 근활성도에 미치는 영향)

  • Kwak, Seon-Kyu;Ki, Kyong-Il;Kim, Dae-Yeon;Kim, Ki-Yeong;Youn, Hye-Jin
    • PNF and Movement
    • /
    • v.10 no.4
    • /
    • pp.25-31
    • /
    • 2012
  • Purpose : The purpose of present study was to investigate the effects of proprioceptive neuromuscular facilitation (PNF) lifting on contralateral leg muscle activities in a seated position. Methods : Twenty healthy subjects were recruited for this study. Lifting was performed from each of the three position. An surface electromyogram (EMG) was used to record the EMG activities from vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius medialis (GM) in contralateral leg muscle. The data were analyzed using a repeated measures of one-way analysis of variance (ANOVA) with post-hoc Bonferroni's correction to determine the statistical significance. Results : The results of this study were summarized as follows: In comparison to the start position, percentage maximal voluntary isometric contraction (%MVIC) values of the VM, TA and GM demonstrated a significantly higher activities in the end position(p<.05). Conclusion : The result shows that contralateral leg muscles activities significantly more increase in the end position when PNF lifting was applied. Therefore, this study will be used to prove effect of indirect approach for the stability and strengthening in patients with leg impairments.

Preparation of a Li7La3Zr1.5Nb0.5O12 Garnet Solid Electrolyte Ceramic by using Sol-gel Powder Synthesis and Hot Pressing and Its Characterization

  • Lee, Hee Chul;Oh, Nu Ri;Yoo, Ae Ri;Kim, Yunsung;Sakamoto, Jeff
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1535-1540
    • /
    • 2018
  • In this study, we prepared and characterized Nb-doped $Li_7La_3Zr_{2-x}O_{12}$ (LLZNO) powder and pellets with a cubic garnet structure by using a modified sol-gel synthesis and hot pressing. LLZNO powder with a very small grain size and cubic structure without secondary phases could be obtained by using a synthesis method in which Li and La sources in a propanol solvent were mixed together with Zr and Nb sources in 2-methoxy ethanol. A pure cubic phase LLZNO pellet could be fabricated from the prepared LLZNO and an additional 6-wt% of $Li_2CO_3$ powder by hot pressing at $1050^{\circ}C$ and 15.8 MPa. The hot-pressed LLZNO pellet with a relative density of 99% exhibited a very dense surface morphology. The total Li ionic conductivity of the hot-pressed LLZNO was $7.4{\times}10^{-4}S/cm$ at room temperature, which is very high level compared to other reported values. The activation energy for ionic conduction was estimated to be 0.40 eV.

Effect of sulfate activators on mechanical property of high replacement low-calcium ultrafine fly ash blended cement paste

  • Liu, Baoju;Tan, Jinxia;Shi, Jinyan;Liang, Hui;Jiang, Junyi;Yang, Yuanxia
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.183-192
    • /
    • 2021
  • Due to economic and environmental benefits, increasing the substitution ratio of ordinary cement by industry by-products like fly ash (FA) is one of the best approaches to reduce the impact of the concrete industry on the environment. However, as the substitution rate of FA increases, it will have an adverse impact on the performance of cement-based materials, so the actual substitution rate of FA is limited to around 10-30%. Therefore, in order to increase the early-age strength of high replacement (30-70%) low-calcium ultrafine FA blended cement paste, sodium sulfate and calcium sulfate dihydrate were used to improve the reactivity of FA. The results show that sodium sulfate has a significant enhancement effect on the strength of the composite pastes in the early and late ages, while calcium sulfate dihydrate has only a slight effect in the late ages. The addition of sodium sulfate in the cement-FA blended system can enhance the gain rate of non-evaporation water, and can decrease the Ca(OH)2 content. In addition, when the sulfate chemical activators are added, the ettringite content increases, and the surface of the FA is dissolved and hydrated.

Structural Characteristics by Nitridation of Oxygen Added Cr Thin Films in NH3 Atmosphere (산소가 첨가된 Cr 박막의 NH3 분위기에서의 질화 처리에 의한 구조적 특성)

  • Kim, Danbi;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.635-641
    • /
    • 2021
  • Cr thin films with O added are deposited on sapphire substrate by DC sputtering and are nitrided in NH3 atmosphere between 300 and 900 ℃ for various times. X-ray diffraction results show that nitridation begins at 500 ℃, forming CrN and Cr2N. Cr oxides of Cr2O3 are formed at 600 ℃. And, at temperatures higher than 900 ℃, the intermediate materials of Cr2N and Cr2O3 disappear and CrN is dominant. The atomic concentration ratios of Cr and O are 77% and 23%, respectively, over the entire thickness of as-deposited Cr thin film. In the sample nitrided at 600 ℃, a CrN layer in which O is substituted with N is formed from the surface to 90 nm, and the concentrations of Cr and N in the layer are 60% and 40%, respectively. For this reason, CrN and Cr2N are distributed in the CrN region, where O is substituted with N by nitridation, and Cr oxynitrides are formed in the region below this. The nitridation process is controlled by inter-diffusion of O and N and the parabolic growth law, with activation energy of 0.69 eV.

Effects of Head Direction on Electromyographic Activity of Quadriceps, Center of Pressure and Foot Pressure during Squat Exercise

  • Xue, Yao;Kim, Kyu-Ryeong;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2021
  • PURPOSE: This study examined the effects of changes in the head direction (forward, upward 10° and downward 10°) on the quadriceps, center of pressure (COP), and foot pressure during squat exercises. The aim was to determine if the head direction could better activate the quadriceps muscle and provide a safer and stable squat posture during squat exercise. METHODS: Fifteen healthy college students were asked to stand on a Zebris, and three electrodes for sEMG were attached to their vastus medialis oblique (VMO), vastus lateralis (VL), and rectus femoris (RF) muscles. The participants then performed squatting exercises under three head directions (forward, upward 10°, and downward 10°). Surface electrodes were then used to record the EMG data during exercise. The Zebris FDM-SX was used to measure the foot pressure and COP of the participants. RESULTS: In squat exercise, the upward head direction group showed significantly higher VL activation than the downward head direction group (p < .05). The upward head direction group showed a significant backward change in the deviation of the COP than the downward and forward groups (p < .05). The upward head direction group showed a significant decrease in forefoot pressure than the downward and forward groups (p < .05) and an increase in the hindfoot pressure compared to the downward and forward groups (p < .05). CONCLUSION: The head direction upward in squat exercise has a positive effect on the quadriceps.

Variation of the Muscle Activity of Erector Spinalis and Multifidus According to Their Respective Cueing When Performing Tasks, Including Tactile Stimulation in Prone Position

  • Gam, Byeong-Uk;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.1
    • /
    • pp.88-96
    • /
    • 2022
  • Objective: Purpose of this study was to compare muscle activity ratio of multifidus to erector spinalis according to various cueing including tactile stimulation to provide an effective strategy to provide verbal and tactile feedback during exercise to provoke multifidus muscle activation. Design: Cross-sectional study. Methods: Participants of this study included 28 healthy adults. Muscle activities of the multifidus and erector spinalis were measured while the participants performed tasks according to the three different methods of verbal cueing and three different tactile stimulation. Surface EMG was used to measure the muscular activity of the muscles during all the tasks. Results: Tactile stimulation to abdomen and lumbar vertebrae showed no significant difference in the muscle activity ratio (p>0.05). However, muscle activity ratio of the multifidus in relation to the erector spinalis was increased when subjects were given verbal instructions to make lumbar curvature with little force and to make lumbar curvature while pulling navel (p<0.05). However, it was decreased when they were provided with verbal instruction to make lumbar curvature with strong force (p<0.05). Conclusions: According to the results, proper verbal instruction was an effective tool to increase the muscular activity of multifidus. This study aimed to find and provide the most appropriate verbal cueing while doing exercises to activate multifidus.

Synthesis of NiO and TiO2 Combined SiC Matrix Nanocomposite and Its Photocatalytic MB Degradation

  • Zambaga, Otgonbayar;Jun Hyeok, Choi;Jo Eun, Kim;Byung Jin, Park;Won-Chun, Oh
    • Korean Journal of Materials Research
    • /
    • v.32 no.11
    • /
    • pp.458-465
    • /
    • 2022
  • Interest in the use of semiconductor-based photocatalyst materials for the degradation of organic pollutants in a liquid phase has grown, due to their excellent performance and response to the light source. Herein, we fabricated a NiO-SiC-TiO2 ternary structured photocatalyst which had reduced bandgap energy, with strong activation under UV-light irradiation. The synthesized samples were examined using XRD, SEM, EDX, TEM, DRS, EIS techniques and photocurrent measurement. The results confirmed that the two types of metal oxides were well bonded to the SiC fiber surface. The junction of the new photocatalyst exhibited a large number of photoexcited electrons and holes. The holes tended to oxidize the water and form a hydroxyl radical, which promoted the decomposition of methylene blue. The close contact between the 2D SiC fiber and metal oxide semiconductors expanded the scope of absorption wavelength, and enhanced the usability of the ternary photocatalyst for the degradation of methylene blue. Among three synthesized samples, the NiO-SiC-TiO2 showed the best photocatalytic effect, and was considered to have excellent photoelectron transfer due to the synergy effect between the metal oxide and SiC.