Structural Characteristics by Nitridation of Oxygen Added Cr Thin Films in NH3 Atmosphere

산소가 첨가된 Cr 박막의 NH3 분위기에서의 질화 처리에 의한 구조적 특성

  • Kim, Danbi (Department of Materials Science and Engineering, Hanbat National University) ;
  • Kim, Seontai (Department of Materials Science and Engineering, Hanbat National University)
  • 김단비 (한밭대학교 신소재공학과) ;
  • 김선태 (한밭대학교 신소재공학과)
  • Received : 2021.08.25
  • Accepted : 2021.11.03
  • Published : 2021.11.27


Cr thin films with O added are deposited on sapphire substrate by DC sputtering and are nitrided in NH3 atmosphere between 300 and 900 ℃ for various times. X-ray diffraction results show that nitridation begins at 500 ℃, forming CrN and Cr2N. Cr oxides of Cr2O3 are formed at 600 ℃. And, at temperatures higher than 900 ℃, the intermediate materials of Cr2N and Cr2O3 disappear and CrN is dominant. The atomic concentration ratios of Cr and O are 77% and 23%, respectively, over the entire thickness of as-deposited Cr thin film. In the sample nitrided at 600 ℃, a CrN layer in which O is substituted with N is formed from the surface to 90 nm, and the concentrations of Cr and N in the layer are 60% and 40%, respectively. For this reason, CrN and Cr2N are distributed in the CrN region, where O is substituted with N by nitridation, and Cr oxynitrides are formed in the region below this. The nitridation process is controlled by inter-diffusion of O and N and the parabolic growth law, with activation energy of 0.69 eV.



  1. L. Hultman, Vacuum, 57, 1 (2000).
  2. P. Hones, N. Martin, M. Regula and F. Levy, J. Phys. D: Appl. Phys., 36, 1023 (2003).
  3. K. Liu, S. Young, S. Chang, T. Hsueh, H. Hung, S. Chen and Y. Chen, J. Alloys Compd., 511, 1 (2012).
  4. Q. Sun and Z. Fu, Electrochem. Solid State Lett., 10, A189 (2007).
  5. K. Ibrahim, M. M. Rahman, H. Taha, E. Mohammadpour, Z. Zhou, C. Y. Yin, A. Nikoloski and Z. T. Jiang, Appl. Surf. Sci., 440, 1001 (2018).
  6. E. Haye, A. Achour, A. Guerra, F. Moulai, T. Hadjersi, R. Boukherroub, A. Panepinto, T. Brousse, J. J. Pireaux and S. Lucas, Electrochim. Acta, 324, 134890 (2019).
  7. R. Li, Y. Cai, K. Wippermann and W. Lehnert, J. Power Sources, 434, 226718 (2019).
  8. S. W. Russell, J. Li, T. L. Alford, P. R. Oakey and S. C. Shatas, Appl. Surf. Sci., 90, 455 (1995).
  9. J. G. Buijnsters, P. Shankar, J. Sietsma and J. J. Meulen, Mater. Sci. Eng., A341, 289 (2003).
  10. J. Kim, C. Byun and S. Kim, Korean J. Mater. Res., 24, 194 (2014).
  11. R. T. Haasch, T. Y. Lee, D. Gall, J. E. Green and I. Petrov, Surf. Sci. Spectra, 7, 3 (2000).
  12. A. Lippitz and T. Hubert, Surf. Coat. Technol., 200, 250 (2005).
  13. S. Agouram, F. Bodart and G. Terwagne, Surf. Coat. Technol., 180-181, 164 (2004).
  14. Y. Kubo, Y. Sonohara and S. Uemura, Appl. Surf. Sci., 553, 149437 (2021).
  15. B. E. Deal and A. S. Grove, J. Appl. Phys., 36, 3770 (1965).
  16. C. Jimrnez, J. Perrirre, C. Palacio, J. P. Enard and J. M. Albella, Thin Solid Films, 228, 247 (1993).
  17. J. Lee and S. Kim, Korean J. Mater. Res., 15, 348 (2005).
  18. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., p. 407, Addison-Wesley, London (1978).
  19. I. Milosev, H. H. Strehblow and B. Navinsek, Surf. Coat. Technol., 74-75, 897 (1995).
  20. W. Mayr, W. Lenguer, P. Ettmayer, D. Rafaja, J. Bauer and M. Bhon, J. Phase Equil., 20, 35 (1999).