• Title/Summary/Keyword: surface accuracy

Search Result 2,616, Processing Time 0.03 seconds

A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module (레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구)

  • Young-Durk Park
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

Geometric Accuracy Measurement of Machined Surface Using the OMM (On the Machine Measurement) System

  • Kim, Sun-Ho;Lee, Seung-Woo;Kim, Dong-Hoon;Lee, An-Sung;Lim, Sun-Jong;Park, Kyoung-Taik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.57-63
    • /
    • 2003
  • Machining information such as form accuracy and surface roughness is an important factor for manufacturing precise parts. To this regard, OMM (On the Machine Measurement) has been researched for last several decades to alternate CMM (Coordinate Measurement Machine) process. In this research, the OMM system with a laser displacement sensor was developed for measuring form accuracy and surface roughness of the machined workpiece on the machine tool. The surface roughness was estimated comparing the sensory signal with the reference data measured from master specimen. Also, form accuracy was determined from the moving averaged raw data. In addition, the geometric error map constructed beforehand using the geometric errors of the machine tool was used to compensate the obtained form accuracy. The overall performance was compared with CMM result, and verified the feasibility of the measurement system.

A Study on Roughness Characteristic about Rotational Accuracy Variation (스핀들의 회전 정밀도에 따른 표면 거칠기 특성 연구)

  • Park, Ki-Beom;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.110-115
    • /
    • 2009
  • In general, the radial error motion of a machine tool spindle system is effected on the accuracy of the parts to be made. This paper presents in milling process an investigation into spindle rotational accuracy effects on surface roughness of processing parts. We experimented the effects on spindle rotational accuracy in milling process by cutting AL 7075 workpiece at various rotational speed. In order to analyze the effects of rotational accuracy on surface roughness, we proposed the method using iSIGHT's RBF Approximation. The proposed method can be used fur anticipating the surface roughness when some spindle rotational accuracy experiments could be done in milling process.

A study on the surface accuracy according to applied load in burnishing of steel

  • Lee, Y.C.;Yuck, K.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.70-76
    • /
    • 1993
  • Burnishing, as a micro plastic working, is a finishing process used in conjuction with or in replacement of reaming, honing, lapping, and/or grinding. The tool which is a smooth, round steel ball slightly larger than the bore is pushed through pre-machined hole, leaving a closely controlled finish. The major application of the processes is to improve the geometric and mechanical properties of surface such as (1) dimensional accuracy, (2) surface roughness, (3) bearing ratio, (4) surface hardness, (5) wear resistance, (6) fatigue and corrosion resistance, etc. Therefore, this study carried out some experiments to illustrate the theoretical formula and to investigate surface accuracy (e.g. variation of diameter, surface roughness, bearing ratio) in accordance with the applied burnishing load.

  • PDF

An In-Process Measurement Technique for Non-contact Monitoring of Surface Roughness and form Accuracy of Ground Surfaces (연삭 가공면의 표면조도와 형상정밀도의 비접촉식 인프로세스 측정기술)

  • Yim, Dong-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.2
    • /
    • pp.36-46
    • /
    • 1987
  • An optical technique using laser for non-contact measurement of surface roughness and form accuracy of ground surfaces is presented. It is found that, when a ground surface is illuminated by a beam of laser light, the roughness height and slope distribution has significant influence on the pattern of reflection and it maintains an unique Gaussian distribution relationship with the surface roughness. The principle idea of the optical measurement system is therefore monitor the radiation, and then calibrate it in process against surface roughness by means of necessary digital data processing. On the other hand, measuring the form accuracy of a ground surface is accomplished by using a triangular method, which is based on observing the movement of an image of a spot of light projected onto the surface. The image is focused, through a series of lenses for magnification, on a photodetector array lf line configur- ation. Then the relative movement of image and consequently the form accuracy of the surface can be obtained through appropriate calibration procedures. Experimental test showed that the optical roughness measurement technique suggested in this work is very efficient for most industrial applications being capable of monitoring the roughness heights ranging 0.1 to 0.6 .$\mu$m CLA values. And form accuracy can be measured in process with a resolution of 10 .$\mu$m.

  • PDF

Development of machining system for ultra-precision aspheric lens mold (초정밀 비구면 렌즈 금형가공시스템 개발)

  • Baek, Seung-Yub;Lee, Ha-Sung;Kang, Dong-Myeong
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

A Study on Unifying Topology and Numerical Accuracy in Geometric Modeling: Surface to Surface Intersections (토폴로지와 수치적 정확도를 통합한 기하모델링에 관한 연구: 곡면간 교차선)

  • Ko, Kwang-Hee
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.344-353
    • /
    • 2007
  • In this paper, we address the problem of robust geometric modeling with emphasis on surface to surface intersections. We consider the topology and the numerical accuracy of an intersection curve to find the best approximation to the exact one. First, we perform the topological configuration of intersection curves, from which we determine the starting and ending points of each monotonic intersection curve segment along with its topological structure. Next, we trace each monotonic intersection curve segment using a validated ODE solver, which provides the error bounds containing the topological structure of the intersection curve and enclosing the exact root without a numerical instance. Then, we choose one approximation curve and adjust it within the bounds by minimizing an objective function measuring the errors from the exact one. Using this process, we can obtain an approximate intersection curve which considers the topology and the numerical accuracy for robust geometric modeling.

Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone (휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가)

  • Baek Seung-Yub;Lee Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

Comparison of Accuracy of RP Processes (RP 공정의 정밀도 비교 평가)

  • 변홍석;신행재;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.330-333
    • /
    • 2000
  • Dimensional accuracy and surface quality are very important in rapid prototyping especially when the models are used for the production of tools. This paper presents the development of benchmarking part to investigate dimensional accuracy and surface finish. A new test part is designed to perform benchmarking of major rapid prototyping processes such as selective laser sintering, laminated object manufacturing, stereolithography apparatus, and fused deposition modeling. The test part design includes basic manufacturing features such as holes, walls, squares, cylinder and etc. In addition, the small features are included in order to evaluate the fine details that can be manufactured by a specific RP process. The CMM program that automatically measures different features in the test part is also developed. The evaluation of accuracy as well as surface roughness are discussed for major rapid prototyping processes.

  • PDF

Selection of optimal machining condition for productivity enhancement of aspheric surface lens (비구면 렌즈의 생산성 향상을 위한 최적가공조건선정)

  • Baek S.Y.;Lee H.D.;Kim S.C.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.561-562
    • /
    • 2006
  • To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

  • PDF