• Title/Summary/Keyword: surface accumulation

Search Result 589, Processing Time 0.021 seconds

Spatial and Temporal Variation of Characteristics and Pollution Assessment of Sediment in the Watersheds of Andong-Dam and Imha-Dam, Korea (안동댐과 임하댐 유역에서 퇴적물 특성 및 오염도의 시·공간적 변화)

  • Kim, Shin;Jeong, Hyun-Gi;Kim, Hyoung-Geun;Kim, Ju-Eon;Park, Su-Jeong;Kim, Yong-Seok;Yang, Deuk-Seok
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1085-1099
    • /
    • 2019
  • We investigated the spatial and temporal variation in characteristics and pollution assessment of sediments in the watersheds of Andong-Dam and Imha-Dam, in Korea. Surface sediments were collected from six sites once a year for three years (2015-2017), and analyzed for organic matter (water content, IL, COD, TOC, TN, and TP), grain size, and concentration of trace metals (Al, Li, Zn, Cr, Pb, Cu, Ni, and As). Organic matter generally tended to increase, and was higher in the Andong watershed compare to Imha watershed. Surface sediments were mainly composed of silt. Coarse sediments were mainly distributed at the site adjacent to Andong-Dam, and showed fining after coarsening. Fine sediment were mainly distributed at the site adjacent to Imha-Dam, and were gradually coarsening. Concentration of trace metals generally tended to increase, and was higher for sites in watershed of Andong watershed (PLI > 1) than for sites in Imha watershed (PLI < 1). Trace metals in the study area were considered to be affected by fine sediment (silt), and contamination of trace metals was somewhat affected by Pb, and greatly affected by Zn and As.

Geochemistry of Pb in Surface Sediments of the Yellow Sea: Contents and Speciation

  • Kim, Kyung-Tae;Lim, Chae-Reol;Cho, Yeong-Gil;Hong, Gi-Hoon;Lim, Suk-Hyun;Yang, Dong-Beom;Choi, Man-Sik
    • Journal of the korean society of oceanography
    • /
    • v.35 no.4
    • /
    • pp.179-191
    • /
    • 2000
  • Both acid-leached and residual Pb in surface sediments of the Yellow Sea are analyzed in order to explain the spatial distribution of Pb contents and to determine a major controlling factor of its geographical distribution. Leached and residual Pb contents in surface sediments, which may have a different origin, show mirrored geographical distribution. Sediments with high residual Pb ( ${\sim}$20 ${\mu}$g/g; northeastern sand) contain low leached Pb (6-8 ${\mu}$g/g) while sediments with high leached Pb ( ${\sim}$20 ${\mu}$g/g; central mud) contain low residual Pb. As a result, total Pb shows little variation spatially. The mirrored distribution of both species also leads the grain-size dependence of Pb contents to be unclear although the grain-size dependence of other trace metals (Cr, Co, Ni etc.) has been well reported in this shelf. High leached Pb contents (>15 ${\mu}$g/g) were also observed in sediments off the Changjiang River mouth and off the Kyunggi Bay where they can be interpreted as the results of diagenetic accumulation and anthropogenic pollution, respectively. Residual Pb enriched in sands of the northeastern area might be from K-feldspar, which in turn allows the suggestion that northeastern sands may have originated from coastal erosion of granitic landmass or directly from nearby rivers.

  • PDF

An experimental study on tailings deposition characteristics and variation of tailings dam saturation line

  • Wang, Guangjin;Tian, Sen;Hu, Bin;Kong, Xiangyun;Chen, Jie
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2020
  • This study adopted soil test and laboratory physical model experiments to simulate the tailings impoundment accumulation process according to the principle of similarity. Relying on the practical engineering, it analyzed the tailings deposition characteristics on dry beach surface during the damming process, as well as the variation rules of dam saturation line. Results suggested that, the tailings particles gradually became finer along the dry beach surface to inside the impoundment. The particle size suddenly changed at the junction between the deposited beach and the water surface, which displayed an obvious coarsening phenomenon. Besides, the deposited beach exhibited the vertical feature of coarse upward and fine downward on the whole. Additionally, in the physical model, the saturation line elevated with the increase in dam height, and its amplitude was relatively obvious within the range of 1.0-4.5 m away from the initial dam. Under flood condition, the saturation line height was higher than that under normal condition on the whole, with the maximum height difference of 4 cm. This study could provide an important theoretical basis for further studies on dam failure experiments and the evolution rules of leaked tailings flow.

ASSESSMENT AND CONTROL OF TOTAL NUTRIENT LOADS IN WATERSHED AND STREAM NETWORK IN SOUTH-WEST TEXAS

  • Lee, Ju-Young;Choi, Jae-Young
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, the population growth and agricultural development are rapidly undergoing in the South-West Texas. The junction of three river basins such as Lavaca river basin, Colorado-Lavaca Coastal basin and Lavaca-Guadalupe Coastal basin, are interesting for non-point and point source pollutant modeling: Especially, the 2 basins are an intensively agricultural region (Colorado-Lavaca Coastal/Lavaca-Guadalupe Coastal basins) and several cities are rapidly extended. In case of the Lavaca river basin, there are many range land. Several habitat types wide-spread over three relatively larger basins and five wastewater discharge regions are located in there. There are different hazardous substances which have been released. Total nutrient loads are composed of land surface load and river load as Non-point source and discharge from wastewater facilities as point source. In 3 basins region, where point and non-point sources of poll Jtion may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to how to assess and control the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern as non-point source with water quality related to pesticides, fertilizer, and nutrients and as point source with wasterwater discharge from cities. The GIS technique has been developed to aid in the point and non-point source analysis of impacts to natural resource within watershed. This project shows the losses in $kg/km^2/year$ of BOD (Biological Oxygen Demand), TN (Total Nitrogen) and TP (Total Phosphorus) in the runoff from the surface of 3 basins. In the next paper, sediment contamination will show how to evaluate in Estuarine habitats of these downstream.

  • PDF

Variation of Friction Coefficient of Airport Runway Surface by Rubber Deposits (고무 퇴적물에 의한 공항 활주로 표면 마찰계수 변화)

  • Cheon, Sung-Han;Lim, Jin-Sun;Park, Joo-Young;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.131-137
    • /
    • 2010
  • In this paper, overseas criteria and research results were reviewed to develop a rational criterion proper to domestic airport runways on measurement of friction coefficient and removal of rubber deposit. The friction coefficients of the runways of the Incheon International Airport were measured by the ASFT(Airport Surface Friction Tester) from August 2007 to July 2009 and the data at intensively landed points were analyzed. Variation of the friction coefficient due to accumulation and removal of tire rubber was analyzed and seasonal influence on the variation were investigated by pavement types. The friction coefficient steadily decreased over a long term despite periodical removal of the rubber deposits. The variation of the friction coefficient in summer was larger than other seasons and asphalt pavement was more sensitive to the seasonal influence than concrete pavement. The friction coefficient of the asphalt pavement with macro texture was even larger than that of early age concrete pavement with micro texture. The variation of the friction coefficient of the asphalt pavement due to the deposit and removal of the tire rubber was also larger than that of the concrete pavement.

Implication of Soil Minerals on Formation of Impermeable Layers in Saprolite Surface-Piled Upland Fields at Highland

  • Zhang, Yongseon;Sonn, Yeon-Kyu;Moon, Yong-Hee;Jung, Kangho;Cho, Hye-Rae;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.284-289
    • /
    • 2014
  • Farmers in highlands in South Korea pile up 20 to 30 cm of saprolites, mostly granite- or granite-gneiss-weathered materials, on surface of arable lands every three to five years to compensate eroded soil and sometimes to discontinue soil-borne diseases. Immediate increases of infiltration and percolation rates are expected with coarse textured saprolites while soil drainage becomes poorer in a long-term. In this study, we analyzed mineralogical characteristics and micro-morphology of plow pan to investigate processes making impermeable layers. Soil samples were collected from plow pan, usually located at approximately 20 cm soil depth and at the lower part of piled saprolites, in arable lands in Hoenggye 5-ri, Daekwanryeong-myeon, Gangwon-do (N37.7, E128.7) in which saprolites were added 2, 4, and 8 years ago; saprolites were transported from similar areas. The saturated hydraulic conductivity decreased over time. Based on soil thin section pedography, quartz and feldspar accounted for a majority of minerals. The size of feldspar decreased and macropores became filled with clay or silt particles over time, which implies that macropores were packed with particles weathered from feldspar. The X-ray diffraction (XRD) analysis indicated that intensity of feldspar decreased over time and the reverse was true for kaolinite and illite, indicating that feldspar and mica weathering induced formation of kaolinite and illite. Conclusively, deteriorated drainage by formation of impermeable layers in farms with piled saprolites was caused by accumulation of clay minerals such as kaolinite and illite in macropores; illite and kaolinite can be formed by weathering of mica and feldspar, respectively.

A study on the high transparent and antistatic thin films on sodalime glass by reactive pulsed DC magnetron sputtering (Pulsed DC 마그네트론 스퍼터링으로 제조한 소다라임 유리의 고투과 및 대전방지 박막특성 연구)

  • Jung, Jong-Gook;Lim, Sil-Mook
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • Recently, transmittance of photomasks for ultra-violet (UV) region is getting more important, as the light source wavelength of an exposure process is shortened due to the demand for technologies about high integration and miniaturization of devices. Meanwhile, such problems can occur as damages or the reduction of yield of photomask as electrostatic damage (ESD) occurs in the weak parts due to the accumulation of static electricity and the electric charge on chromium metal layers which are light shielding layers, caused by the repeated contacts and the peeling off between the photomask and the substrate during the exposure process. Accordingly, there have been studies to improve transmittance and antistatic performance through various functional coatings on the photomask surface. In the present study, we manufactured antireflection films of Nb2O5, | SiO2 structure and antistatic films of ITO designed on 100 × 100 × 3 mmt sodalime glass by DC magnetron sputtering system so that photomask can maintain high transmittance at I-line (365 nm). ITO thin film deposited using In/Sn (10 wt.%) on sodalime glass was optimized to be 10 nm-thick, 3.0 × 103 𝛺/☐ sheet resistance, and about 80% transmittance, which was relatively low transmittance because of the absorption properties of ITO thin film. High average transmittance of 91.45% was obtained from a double side antireflection and antistatic thin films structure of Nb2O5 64 nm | SiO2 41 nm | sodalime glass | ITO 10 nm | Nb2O5 64 nm | SiO2 41 nm.

Study on the narrowed nanopores of anodized aluminum oxide template by thin-film deposition using e-beam evaporation (전자빔 증발법 박막 증착을 이용한 양극 산화 알루미늄 템플릿의 나노 포어 가공 연구)

  • Lee, Seung-Hun;Lee, Minyoung;Kim, Chunjoong;Kim, Kwanoh;Yoon, Jae Sung;Yoo, Yeong-Eun;Kim, Jeong Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.1
    • /
    • pp.25-29
    • /
    • 2021
  • The fabrication of nanopore membrane by deposition of Al2O3 film using electron-beam evaporation, which is fast, cost-effective, and negligible dependency on substance material, is investigated for potential applications in water purification and sensors. The decreased nanopore diameter owing to increased wall thickness is observed when Al2O3 film is deposited on anodic aluminum oxide membrane at higher deposition rate, although the evaporation process is generally known to induce a directional film deposition leading to the negligible change of pore diameter and wall thickness. This behavior can be attributed to the collision of evaporated Al2O3 particles by the decreased mean free path at higher deposition rate condition, resulting in the accumulation of Al2O3 materials on both the surface and the edge of the wall. The reduction of nanopore diameter by Al2O3 film deposition can be applied to the nanopore membrane fabrication with sub-100 nm pore diameter.

Contents of Inorganic Elements in Shellfish and Geochemical Characteristics of Surface sediments on the West Coast of Korea (서해연안 패류의 성분원소 함량 및 퇴적물의 지화학적 특성)

  • Choi, Yoon Seok;Park, Kwang Jae;Song, Jae Hee;Yoon, Sang Pil;Chung, Sang Ok;An, Kyoung Ho
    • The Korean Journal of Malacology
    • /
    • v.28 no.3
    • /
    • pp.225-232
    • /
    • 2012
  • In order to evaluate the relationship of between the contents of inorganic elements in shellfish and surface sediments, we measured the concentration of inorganic elements (As, Ca, Cd, Cr, Fe, Hg, Li, Mn, Ni, P, Pb, Zn) in various shellfish and surface sediments of research area. The enrichment factor (EF) and the index of accumulation rate (Igeo) of the metals showed that the research areas can be classified as moderately polluted, or unpolluted. And also we measured the geochemical characteristics of surface sediments(grain size, chemical oxygen demand (COD), ignition loss (IL) and acid volatile sulfide (AVS). The grain sizes for research areas of surface sediment were similar the ratio of silt and clay in comparison with other sites. The COD and IL in surface sediment ranged from 5.41 to 14.06 mg/g. d.w. (mean $8.78{\pm}3.16$ mg/g d.w.) and from 0.92 to 3.17% (mean $2.08{\pm}0.86%$), respectively. Siginificant differences in metal concentrations also were determinated in the shellfish tissue among the different sites. However, except for metals(Mn, Zn), which showed some elevation of concentrations, the variations in the shellfish tissue were not related to variations in the sediment.

Effects of Immobilized Bipolar Interface Formed by Multivalent and Large Molecular Ions on Electrodialytic Water Splitting at Cation-Exchange Membrane Surface (양이온교환막 표면의 전기투석 물분해에서 다가의 큰 이온성분자에 의해 형성된 고정층 바이폴라 계면의 영향)

  • Seung-Hyeon Moon;Moon-Sung Kang;Yong-Jin Choi
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.143-153
    • /
    • 2003
  • The effects of bipolar interface formed on the surface of cation-exchange membrane on water splitting phenomena were investigated. Results showed that the formation of immobilized bipolar interface resulted in significant water splitting during electrodialysis. In particular, the immobilized bipolar interface was easily created on the cation-exchange membrane surface in the electrodialytic systems where multivalent cations served as an electrolyte. Multivalent cations with low solubility product resulted in violent water splitting because they were easily precipitated on the membrane surface in hydroxide form. Therefore, the bipolar interface consisting of H- and OH-affinity groups were formed on the membrane-solution interface. Apparently, water splitting was largely activated with the help of strong electric fields generated between the metal hydroxide layer and fixed charge groups on the membrane surface. Likewise, the accumulation of large molecular counter ions on the membrane surface led to the formation of a fixed bipolar structure that could cause significant water splitting in the over-limiting current region. Therefore, the prevention of the immobilization of bipolar interface on the membrane surface is very essential in improving the process efficiency in a high-current operation.