• Title/Summary/Keyword: surface integral method

Search Result 295, Processing Time 0.04 seconds

Numerical simulation on capillary absorption of cracked SHCC with integral water repellent treatment

  • Yao Luan;Tetsuya Ishida
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.123-135
    • /
    • 2024
  • Strain-hardening cement-based composites (SHCC) under cracked condition exhibits remarkable capillary absorption due to water ingress from multiple cracks. Surface treatment using water repellent agents is an effective way for improving water resistance of SHCC, but the water resistance may remarkably decrease when cracks penetrate impregnation depth. Another way is to add water repellent agents directly into the mixture, offering SHCC integral water repellency even if cracks form later. However, although integral water repellent treatment has been proved feasible by previous studies, there is still lack of simulation work on the treated SHCC for evaluating its durability. This study presents a simulation method for capillary absorption of cracked SHCC with integral treatment based on a multi-scale approach proposed in the authors' previous work. The approach deals with water flows in bulk matrix and multiple cracks using two individual transport equations, respectively, whereas water absorbed from a crack to its adjacent matrix is treated as the mass exchange of the two equations. In this study, the approach is enhanced for the treated SHCC by integrating the influencing of water repellency into the two transport equations as well as the mass exchange term. Using the enhanced approach, capillary absorption of water repellent SHCC under cracked condition is simulated, showing much more reduced water ingress than the untreated concrete, which is consistent with total absorption data from previous tests. This approach is also capable of simulating water spatial distribution with time in treated SHCC reasonably.

Analysis of the Scattering Property of Dielectric Scatterer with Impedance Boundary Condition (임피던스 경계면 조건을 적용한 유전체의 산란 특성 분석)

  • Hwang, Ji-Hwan;Park, Sin-Myeong;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1087-1094
    • /
    • 2014
  • An numerical technique of impedance boundary condition to improve an efficiency in the process of moment method with CFIE(Combined Field Integral Equation), which is widely used to analyze the scattering property of dielectric scatterers, and results of its cross-validations are presented in this study. Application of the impedance boundary allows to represent the equivalent surface currents of dielectric scatterer depicted by both kinds of electric/magnetic surface currents(Js, Ms) to the single surface current by Js or Ms only. Accuracy of this technique is validated by the existing CFIE and theoretical values such as Mie-series solution and small perturbation scattering model. The computational difference of less than 1 dB was verified within an imaginary part of dielectric constant more than 12, as well.

Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM (3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Sa-Young;Sung, Hong-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.

Dynamic characteristics of Sound Radiated from a Vibrating Plate by Impact Force (충격가진에 의한 진동판의 방사음에 대한 동특성)

  • 오재응
    • The Journal of the Acoustical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.48-58
    • /
    • 1983
  • The transient sound radiation from the impact between a steel ball and a thick plate is analyzed theoretically and compared with experiment results. The derivation process itself is difficult to analyze sound radiation characteristics theoretically for a thick plate with some resonances but may be investigated from measured data. During mechanical impacts, arbitrary driving point importance for an elastic system enables to predict by using mechanical importance method. In order to obtain approximate solution for an impact model testing, the surface Helmholtz integral formulation based on the integral expression for pressure in the field in terms of surface pressure and normal velocity is used as a basis. A simple expression is developed for an impulsive response function, which is time dependent velocity potential and pressure for an impact may then be computed by a convolution of exciting force. In estimating of elastic-acoustical correlation problems, mechanical inertance, overall transfer function and radiation resistance obtained by signal processing techniques are used. The usefulness is confirmed by applying these methods prediction of arbitray driving pint inertance, radiated sound pressure and exciting force.

  • PDF

Investigation of the Finite Planar Frequency Selective Surface with Defect Patterns

  • Hong, Ic-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1360-1364
    • /
    • 2014
  • In this paper, RCS characteristics on defect pattern of crossed dipole slot FSS having a finite size have been analyzed. To analyze RCS, we applied the electric field integral equation analysis which applies BiCGSTab algorithm with iterative method and uses RWG basis function. To verify the validity of this paper, RCS of PEC sphere has been compared to the theoretical results and FSSs with defect patterns are fabricated and measured. As defect patterns in FSS, missing one column, missing some elements, and discontinuity in surfaces are simulated and compared with the measurement results. Resonant frequency shifts in pass band and changes in bandwidth are observed. From the results, precisely predicting and designing frequency characteristics over defect patterns are essential when applying FSS structures such as FSS radomes.

Identification and Correction of Microlens-array Error in an Integral-imaging-microscopy System

  • Imtiaz, Shariar Md;Kwon, Ki-Chul;Alam, Md. Shahinur;Hossain, Md. Biddut;Changsup, Nam;Kim, Nam
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.524-531
    • /
    • 2021
  • In an integral-imaging microscopy (IIM) system, a microlens array (MLA) is the primary optical element; however, surface errors impede the resolution of a raw image's details. Calibration is a major concern with regard to incorrect projection of the light rays. A ray-tracing-based calibration method for an IIM camera is proposed, to address four errors: MLA decentering, rotational, translational, and subimage-scaling errors. All of these parameters are evaluated using the reference image obtained from the ray-traced white image. The areas and center points of the microlens are estimated using an "8-connected" and a "center-of-gravity" method respectively. The proposed approach significantly improves the rectified-image quality and nonlinear image brightness for an IIM system. Numerical and optical experiments on multiple real objects demonstrate the robustness and effectiveness of our proposed method, which achieves on average a 35% improvement in brightness for an IIM raw image.

A two dimensional mixed boundary-value problem in a viscoelastic medium

  • Ataoglu, S.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.407-427
    • /
    • 2009
  • A fundamental solution for the transient, quasi-static, plane problems of linear viscoelasticity is introduced for a specific material. An integral equation has been found for any problem as a result of dynamic reciprocal identity which is written between this fundamental solution and the problem to be solved. The formulation is valid for the first, second and mixed boundary-value problems. This integral equation has been solved by BEM and algorithm of the BEM solution is explained on a sample, mixed boundary-value problem. The forms of time-displacement curves coincide with literature while time-surface traction curves being quite different in the results. The formulation does not have any singularity. Generalized functions and the integrals of them are used in a different form.

Vertical Structure of the Coastal Atmospheric Boundary Layer Based on Terra/MODIS Data (Terra/MODIS 자료를 이용한 연안 대기경계층의 연직구조)

  • Kim, Dong Su;Kwon, Byung Hyuk
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.281-289
    • /
    • 2007
  • Micrometeorlogical and upper air observation have been conducted in order to determine the atmospheric boundary layer depth based on data from satellite and automatic weather systems. Terra/MODIS temperature profiles and sensible heat fluxes from the gradient method were used to estimate the mixed layer height over a coastal region. Results of the integral model were in good agreement with the mixed layer height observed using GPS radiosonde at Wolsung ($35.72^{\circ}N$, $129.48^{\circ}E$). Since the variation of the mixed layer height depends on the surface sensible heat flux, the integral model estimated properly the mixed layer height in the daytime. The buoyant heat flux, which is more important than the sensible heat flux in the coastal region, must be taken into consideration to improve the integral model. The vertical structure of atmospheric boundary layer can be analyzed only with the routine data and the satellite data.

Calculation of Stress Intensity Factors for a Thick Pipe Using Weight Function Method (가중함수법을 이용한 두꺼운 배관의 응력강도계수 계산)

  • Lee, Hyeong-Yeon;Lee, Jae-Han;Yoo, Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2167-2173
    • /
    • 1996
  • An approximate weight function technique using the indirect boundary integral equation has been presented for the analysis of stress intensity foactors(SIFs) of a thick pipe. One-term boundary integral was introduced to represent the crack surface displacement field for the displacement based weight function technique. An explicit closed-form SIF solution applicable to symmetric cracked pipes without any modification of the solution including both circumferential and radial cracks has been derived. The necessary information in the analysis is two or three reference SIFs. In most cases the SIF solution were in good agreement with those available in the literature.

Dynamic Propagation of a Interface Crack in Functionally Graded Layers under Anti-plane Shear (면외전단하중이 작용하는 기능경사재료 접합면 균열의 동적전파에 관한 연구)

  • Shin, Jeong-Woo;Lee, Young-Shin;Kim, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.459-464
    • /
    • 2010
  • The dynamic propagation of an interface crack between two dissimilar functionally graded layers under anti-plane shear is analyzed using the integral transform method. The properties of the functionally graded layers vary continuously along the thickness. A constant velocity Yoffe-type moving crack is considered. Fourier transform is used to reduce the problem to a dual integral equation, which is then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented. Followings are helpful to increase of the resistance of the interface crack propagation of FGM: a) increase of the gradient of material properties; b) increase of the material properties from the interface to the upper and lower free surface; c) increase of the thickness of FGM layer. The DERR increases or decreases with increase of the crack moving velocity.

  • PDF