• Title/Summary/Keyword: supported catalyst

Search Result 421, Processing Time 0.022 seconds

A Study on the Thermal Aging and SOx Poisoning Characteristics on Alumina Supported Silver Catalyst under Diesel Engine Emission Condition (디젤엔진 배기가스조건하에서의 Pt 및 Ag 담지 알루미나 촉매의 열적 노화 특성과 SOx 피독 특성에 관한 연구)

  • 신병선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.199-208
    • /
    • 2000
  • In this study we investigated on the possibility of platinum and silver catalysts as de-NOx catalyst for activity test of supported metal oxide catalysts. the study was performed with the change of amount of metal and support types. The catalyst was prepared the activity of alumina supported silver catalyst produced by dry and wet impregnation method respectively and the resistance of sulfur for optimum supported silver catalyst,. As a result the activity of alumina supported platinum catalyst was showed at low temperature region but the case of silver catalyst activated at high temperature region. So we finally chose alumina supported silver catalyst as de-NOx target catalyst because alumina supported catalyst showed higher activity than alumina supported platinum catalyst.

  • PDF

THE CATALYTICALLY SUPPORTED COMBUSTOR FOR LEAN MIXTURE (촉매에 의해 안정화된 희박 예혼합기의 연소)

  • Seo, Yong-Seok;Gang, Seong-Gyu;Sin, Hyeon-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.59-67
    • /
    • 1998
  • The aim of this study is to investigate advantages that the catalytically supported combustor can have. For this purpose, the catalytic combustor was prepared which consisted of the catalyst bed and the thermal combustor at the downstream of the catalyst bed. The catalyst bed consisted of two-stage. Pd catalyst was installed in the first stage of the catalyst bed, and Pt catalyst was placed in the second stage. Results showed that the catalytically supported combustion had some advantages. One was that auto-ignition occurred in the thermal combustor. This can give merit that an igniter is not necessary to start flame ignition. Other was that the catalytically supported combustion was stable for lean mixture. When combustion of lean mixture was not supported by surface reaction it became unstable so that big combustion noise was created. Therefore, it is desirable to support flame by catalytic surface reaction to obtain the stable combustion of lean mixture.

  • PDF

Effect of Carbon Dioxide in Dehydrogenation of Ethylbenzene to Styrene over Zeolite-Supported Iron Oxide Catalyst

  • 장종산;노제민;박상언;김우영;이철위
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1342-1346
    • /
    • 1998
  • The dehydrogenation of ethylbenzene with carbon dioxide has been carried out over ZSM-5 zeolite-supported iron oxide catalyst as well as commercial catalyst (K-Fe2O3) and unsupported iron oxide (Fe3O4) for comparison. In the dehydrogenation over the ZSM-5 zeolite-supported iron oxide catalyst, ethylbenzene is predominantly converted to styrene by an oxidative pathway in the presence of excess carbon dioxide. Carbon dioxide in this reaction is found to play a role as an oxidant for promoting catalytic activity as well as coke resistance of catalyst. On the other hand, both of commercial catalyst and unsupported Fe2O4 exhibit considerable decrease in catalytic activity under the same condition. It is suggested that an active phase for the dehydrogenation with carbon dioxide over ZSM-5 zeolite-supported iron oxide catalyst would be rather a reduced and isolated magnetite (Fe3O4)-like phase having oxygen deficiency in the zeolite matrix.

Catalytic Activity of Commercial Metal Catalysts on the Combustion of Low-concentration Methane (저농도 메탄 연소에서 상용 금속촉매의 활성)

  • Lee Kyong-Hwan;Park Jae-Hyun;Song Kwang-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.625-630
    • /
    • 2005
  • This study was focused on the catalytic activity for the combustion of low-concentration methane using various commerical catalysts (six transition metal catalysts in Russia and one rare earth metal (Honeycomb) catalyst in Korea). Catalytic activity was strongly influenced by the type and loading content of metal supported in catalyst. Catalytic performance showed the highest activity in Honeycomb catalyst including rare earth metal, which was the most expensive catalyst, while the next was the catalyst supported Cu with high content (AOK-78-52) and also that supported Cr and Co (AOK-78-56). However, both AOK-78-52 and AOK-78-56 catalysts that were very cheap had lower activation energy than Honeycomb catalyst. In the economical field, both AOK-78-52 and AOK-78-56 catalysts with transition metals showed a good alternative catalyst on the combustion of methane.

Hydrolysis Reaction of NaBH4 Using Activated Cabon Supported Co-B/C, Co-P-B/C Catalyst (활성탄 담지 Co-B/C, Co-P-B/C 촉매를 이용한 NaBH4 가수분해 반응)

  • Oh, Sohyeong;Kim, Youkyum;Bae, Hyojune;Kim, Dongho;Byun, Younghwan;Ahn, Ho-Geun;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.641-646
    • /
    • 2018
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using activated carbon supported Co-B/C, Co-P-B/C catalyst were studied. BET surface area of catalyst, yield of hydrogen, effect of $NaBH_4$ concentration and durability of catalyst were measured. The BET surface area of carbon supported catalyst was over $500m^2/g$ and this value was 2~3 times higher than that of unsupported catalyst. Hydrogen generation of activated carbon supported catalyst was more stable than that of unsupported catalyst. The activation energy of Co-P-B/C catalyst was 59.4 kJ/mol in 20 wt% $NaBH_4$ and 14% lower than that of Co-P-B/FeCrAlloy catalyst. Catalyst loss on activated carbon supported catalyst was reduced to about 1/3~1/2 compared with unsupported catalyst, therefore durability was improved by supporting catalyst on activated carbon.

Polymer Supported Cyanide as an Efficient Catalyst in Benzoin Condensation: An Efficient Route to α-Hydroxy Carbonyl Compounds

  • Kiasat, Ali Reza;Badri, Rashid;Sayyahi, Soheil
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1164-1166
    • /
    • 2009
  • Aromatic aldehydes are efficiently self-condensed into $\alpha$-hydroxy carbonyl compounds by polystyrene-supported ammonium cyanide as an excellent organocatalyst in C-C bond formation. The reaction proceeds in water under mild reaction conditions. The polymeric catalyst can be easily separated by filtration and reused several times without appreciable loss of activity.

Alumina Supported Ammonium Dihydrogenphosphate (NH4H2PO4/Al2O3): Preparation, Characterization and Its Application as Catalyst in the Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles

  • Emrani, Anahita;Davoodnia, Abolghasem;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2385-2390
    • /
    • 2011
  • Preparation of ammonium dihydrogenphosphate supported on alumina ($NH_4H_2PO_4/Al_2O_3$) and its primary application as a solid acid supported heterogeneous catalyst to the synthesis of 1,2,4,5-tetrasubstituted imidazoles by a one-pot, four-component condensation of benzil, aromatic aldehydes, primary amines, and ammonium acetate under thermal solvent-free conditions were described. The results showed that the novel catalyst has high activity and the desired products were obtained in high yields. Furthermore, the products could be separated simply from the catalyst, and the catalyst could be recycled and reused with only slight reduction in its catalytic activity. Characterization of the catalyst was performed by FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques.

Polystyrene Supported Al(OTf)3: a Stable, Efficient, Selective, and Reusable Catalyst for Sulfonylation of Arenes with Sulfonic Acids

  • Boroujeni, Kaveh Parvanak
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1887-1890
    • /
    • 2010
  • Cross-linked polystyrene supported aluminium triflate (Ps-Al(OTf)$_3$) was found to be an efficient and chemoselective heterogeneous Lewis acid catalyst for the direct conversion of arenes to sulfones using sulfonic acids as sulfonylating agents. The solid acid catalyst is stable (as a bench top catalyst) and can be easily recovered and reused without appreciable change in its efficiency.

Hydrogen Production Through Catalytic Dehydrogenation of Decalin over Pt/C Catalyst Using Activated Carbon Aerogel

  • Lee, Gihoon;Kang, Ji Yeon;Jeong, Yeojin;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.191-195
    • /
    • 2015
  • To improve its textural properties as a support for platinum catalyst, carbon aerogel was chemically activated with KOH as a chemical agent. Carbon-supported platinum catalyst was subsequently prepared using the prepared carbon supports(carbon aerogel(CA), activated carbon aerogel(ACA), and commercial activated carbon(AC)) by an incipient wetness impregnation. The prepared carbon-supported platinum catalysts were applied to decalin dehydrogenation for hydrogen production. Both initial hydrogen evolution rate and total hydrogen evolution amount were increased in the order of Pt/CA < Pt/AC < Pt/ACA. This means that the chemical activation process served to improve the catalytic activity of carbon-supported platinum catalyst in this reaction. The high surface area and the well-developed mesoporous structure of activated carbon aerogel obtained from the activation process facilitated the high dispersion of platinum in the Pt/ACA catalyst. Therefore, it is concluded that the enhanced catalytic activity of Pt/ACA catalyst in decalin dehydrogenation was due to the high platinum surface area that originated from the high dispersion of platinum.

Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones

  • Yassaghi, Ghazaleh;Davoodnia, Abolghasem;Allameh, Sadegh;Zare-Bidaki, Atefeh;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2724-2730
    • /
    • 2012
  • A new heterogeneous acidic catalyst was successfully prepared by impregnation of silica (Aerosil 300) by an acidic ionic liquid, named 1-(4-sulfonic acid)butylpyridinium hydrogen sulfate [$PYC_4SO_3H$][$HSO_4$], and characterized using FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques. The amount of loaded acidic ionic liquid on Aerosil 300 support was determined by acid-base titration. This new solid acidic supported heterogeneous catalyst exhibits excellent activity in the synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones by cyclocondensation reaction of 2-aminobenzamide with aromatic aldehydes under solvent-free conditions and the desired products were obtained in very short reaction times with high yields. This catalyst has the advantages of an easy catalyst separation from the reaction medium and lower problems of corrosion. Recycling of the catalyst and avoidance of using harmful organic solvent are other advantages of this simple procedure.