• Title/Summary/Keyword: supported

Search Result 10,482, Processing Time 0.032 seconds

Numerical Investigation on the Behavior of Braced Excavation Supported by Steel Pipe Struts (강관버팀보 흙막이 시스템의 거동 특성에 관한 수치해석적 연구)

  • Yoo, Chung-Sik;Na, Seung-Min;Lee, Jong-Goo;Jang, Dong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.45-56
    • /
    • 2010
  • This paper presents the results of a numerical investigation on the behavior of deep excavation wall system supported by steel pipe struts. A series of three-dimensional finite element analyses were carried out on a braced excavation case which adopted steel pipe struts. The results indicated that the mechanical behavior of the steel pipe supported braced excavation is comparable to that of a conventional H-pile supported excavation, although the steel pipe supported system allows a larger longitudinal spacing than the conventional H-pile strut system. Also shown is that the sectional stresses of the steel pipe support system are within the allowable values. This implies that the steel pipe support system can be effectively used as an alternative to conventional H-pile support system.

Influence of Moving Mass on Dynamic Behavior of Simply Supported Timoshenko Beam with Crack

  • Yoon Han-Ik;Choi Chang-Soo;Son In-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.24-29
    • /
    • 2006
  • In this paper, the effect of open crack on the dynamic behavior of simply supported Timoshenko beam with a moving mass was studied. The influences of the depth and the position of the crack on the beam were studied on the dynamic behavior of the simply supported beam system by numerical methods. The equation of motion is derived by using Lagrange's equation. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack section and is derived by applying fundamental fracture mechanics theory. As the depth of the crack increases, the mid-span deflection of the Timoshenko beam with a moving mass is increased.

Vibration and Noise Control of the Simply Supported Slab Using the Multi-tuned Mass Damper (다중동조질량감쇠기를 이용한 단순지지 슬래브의 진동 및 소음저감에 관한 연구)

  • Hwang, Jae-Seung;Hong, Geon-Ho;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1006-1013
    • /
    • 2008
  • In this study, it is outlined that heavy weight floor impact noise induced by the vibration of slab can be reduced using multi tuned mass damper(MTMD) effectively. Substructure synthesis is utilized to develope analytical model of the slab coupled with MTMD and acoustic power is introduced to evaluate the performance of noise control for simplicity. Numerical analysis is carried out to investigate the effect of the properties of MTMD on the vibration and noise control of the simply supported slab. Numerical analysis shows that mass ratio of MTMD is critical on the vibration and noise control of the slab and it is also essential to reduce the vibration in higher modes of slab in the light of its great effect on the radiation of sound.

Behavior of self supported transmission line towers under stationary downburst loading

  • Darwish, Mohamed M.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.481-498
    • /
    • 2011
  • During the past decade, many electrical transmission tower structures have failed during downburst events. This study is a part of a research program aimed to understand the behaviour of transmission lines under such localized wind events. The present study focuses on assessing the behaviour of self supported transmission line towers under downburst loading. A parametric study is performed to determine the critical downburst configurations causing maximum axial forces for various members of a tower. The sensitivity of the internal forces developing in the tower's members to changes in the downburst size and location was studied. The structural behaviour associated with the critical downburst configurations is described and compared to the behaviour under 'normal' wind loads.

Transverse vibrations of simply supported orthotropic rectangular plates with rectangular and circular cut-outs carrying an elastically mounted concentrated mass

  • Avalos, D.R.;Larrondo, H.A.;Laura, P.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.503-512
    • /
    • 1999
  • Practicing a hole or an orifice through a plate or a slab constitutes a very frequent engineering situation due to operational reasons imposed on the structural system. From a designer's viewpoint it is important to know the effect of this modification of the mechanical system upon its elastodynamic characteristics. The present study deals with the determination of the lower natural frequencies of the structural element described in the title of the paper using a variational approach and expressing the displacement amplitude of the plate in terms of the double Fourier series which constitutes the classical, exact solution when the structure is simply supported at its four edges.

Local buckling behaviour of steel plate elements supported by a plastic foam material

  • Mahendran, M.;Jeevaharan, M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.433-445
    • /
    • 1999
  • Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.

3D Bridge-Vehicle interaction Analysis of Cable-Supported Bridges Using Mode Superposition Method (모드중첩법을 이용한 케이블지지교량의 3차원 교량-차량 상호작용 해석)

  • Lee Jun-Seok;Im Myoung-Hoon;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.265-272
    • /
    • 2005
  • For bridge-vehicle interaction analysis of cable-supported brides, the superposition method is applied based on the results of 3-dimensional free vibration analysis using General-purpose FEM Software. This study firstly performs the eigenvalue analysis for the free vertical and the torsional vibration of bridges using FEM analysis. Next the equations of motion considering interaction between bridges and vehicles/train are derived from mode superposition method. And then dynamic analysis is performed using the Newmark numericial method. Finally through the numerical examples, the dynamic responses of cable-supported bridges by this study are presented and discussed.

  • PDF

Free vibrations of fluid conveying microbeams under non-ideal boundary conditions

  • Atci, Duygu;Bagdatli, Suleyman Murat
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • In this study, vibration analysis of fluid conveying microbeams under non-ideal boundary conditions (BCs) is performed. The objective of the present paper is to describe the effects of non-ideal BCs on linear vibrations of fluid conveying microbeams. Non-ideal BCs are modeled as a linear combination of ideal clamped and ideal simply supported boundary conditions by using the weighting factor (k). Non-ideal clamped and non-ideal simply supported beams are both considered to show the effects of BCs. Equations of motion of the beam under the effect of moving fluid are obtained by using Hamilton principle. Method of multiple scales which is one of the perturbation techniques is applied to the governing linear equation of motion. Approximate solutions of the linear equation are obtained and the effects of system parameters and non-ideal BCs on natural frequencies are presented. Results indicate that, natural frequencies of fluid conveying microbeam changed significantly by varying the weighting factor k. This change is more remarkable for clamped microbeams rather than simply supported ones.

Dynamic Analysis of Simply Supported Flexible Structures Undergoing Large Overall Motion (전체운동을 하는 단순지지 유연 구조물의 동적해석)

  • 유홍희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1363-1370
    • /
    • 1995
  • A nonlinear dynamic modeling method for simply supported structures undergoing large overall motion is suggested. The modeling method employs Rayleigh-Ritz mode technique and Von Karman nonlinear strain measures. Numerical study shows that the suggested modeling method provides qualitatively different results from those of the Classical Linear Cartesian modeling method. Especially, natural frequency variations and residual deformation due to membrane strain effects are observed in the numerical results obtained by the suggested modeling method.

Characterization of Vanadium Oxide Supported on $TiO_2-ZrO_2$ Catalysts by $^{51}V$ Solid-State NMR Spectroscopy

  • Park, Eun-Hee;Lee, Sung-Won;Lee, Man-Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • Supported vanadium oxides are being used extensively as catalysts for a variety of reactions, including partial oxidations and ammoxidations. A series of vanadium oxide supported on TiO2-ZrO2 was obtained by impregnating ammonium metavanadate slowly into a mixed precipitateof Ti(OH)4-Zr(OH)4, followed by calcining in air at high temperatures. The prepared catalysts were characterized by 51V solid-state NMR. In the calcined catalysts 51V NMR studies indicated the peaks corresponding to distorted tetrahedral vanadia species at low V2O5 contents and octahedral vanadia species at high vanadia loadings. These results illustrate the suitability of 51V NMR as a unique quantitative spectroscopic tool in the structural analysis of vanadium(V) oxide catalytic materials.

  • PDF