• Title/Summary/Keyword: support vector regression.

Search Result 554, Processing Time 0.027 seconds

Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

  • Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.539-554
    • /
    • 2024
  • This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.

The Determinants and their Time-Varying Spillovers on Liquefied Natural Gas Import Prices in China Based on TVP-FAVAR Model

  • Ying Huang;Yusheng Jiao
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.93-104
    • /
    • 2024
  • China is playing more predominant role in the liquefied natural gas (LNG) market worldwide and LNG import price is subject to various factors both at home and abroad. Nevertheless, previous studies rarely heed a multiple of factors. A time-varying parameter factor augmented vector auto-regression (TVP-FAVAR) model is adopted to discover the determinants of China's LNG import price and their dynamic impacts from January 2012 to December 2021. According to the findings, market fundamentals have a greater impact on the import price of natural gas in China than overall economic demand, financial considerations, and world oil prices. The primary determinants include domestic gas consumption, consumer confidence and other demand-side information. Then, there are diverse and time-varying spillover effects of the four common determinants on the volatility of China's LNG import price at different intervals and time nodes. The price volatility is more sensitive and long-lasting to domestic natural gas pricing reform than other negative shocks such as the Sino-US trade war and the COVID-19 pandemic. The results in this study further proves the importance of domestic natural gas market liberalization. China ought to do more to support the further marketization of natural gas prices while working harder to guarantee natural gas supplies.

Writer verification using feature selection based on genetic algorithm: A case study on handwritten Bangla dataset

  • Jaya Paul;Kalpita Dutta;Anasua Sarkar;Kaushik Roy;Nibaran Das
    • ETRI Journal
    • /
    • v.46 no.4
    • /
    • pp.648-659
    • /
    • 2024
  • Author verification is challenging because of the diversity in writing styles. We propose an enhanced handwriting verification method that combines handcrafted and automatically extracted features. The method uses a genetic algorithm to reduce the dimensionality of the feature set. We consider offline Bangla handwriting content and evaluate the proposed method using handcrafted features with a simple logistic regression, radial basis function network, and sequential minimal optimization as well as automatically extracted features using a convolutional neural network. The handcrafted features outperform the automatically extracted ones, achieving an average verification accuracy of 94.54% for 100 writers. The handcrafted features include Radon transform, histogram of oriented gradients, local phase quantization, and local binary patterns from interwriter and intrawriter content. The genetic algorithm reduces the feature dimensionality and selects salient features using a support vector machine. The top five experimental results are obtained from the optimal feature set selected using a consensus strategy. Comparisons with other methods and features confirm the satisfactory results.

Prediction models of rock quality designation during TBM tunnel construction using machine learning algorithms

  • Byeonghyun Hwang;Hangseok Choi;Kibeom Kwon;Young Jin Shin;Minkyu Kang
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.507-515
    • /
    • 2024
  • An accurate estimation of the geotechnical parameters in front of tunnel faces is crucial for the safe construction of underground infrastructure using tunnel boring machines (TBMs). This study was aimed at developing a data-driven model for predicting the rock quality designation (RQD) of the ground formation ahead of tunnel faces. The dataset used for the machine learning (ML) model comprises seven geological and mechanical features and 564 RQD values, obtained from an earth pressure balance (EPB) shield TBM tunneling project beneath the Han River in the Republic of Korea. Four ML algorithms were employed in developing the RQD prediction model: k-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB). The grid search and five-fold cross-validation techniques were applied to optimize the prediction performance of the developed model by identifying the optimal hyperparameter combinations. The prediction results revealed that the RF algorithm-based model exhibited superior performance, achieving a root mean square error of 7.38% and coefficient of determination of 0.81. In addition, the Shapley additive explanations (SHAP) approach was adopted to determine the most relevant features, thereby enhancing the interpretability and reliability of the developed model with the RF algorithm. It was concluded that the developed model can successfully predict the RQD of the ground formation ahead of tunnel faces, contributing to safe and efficient tunnel excavation.

Estimation of residual stress in dissimilar metals welding using deep fuzzy neural networks with rule-dropout

  • Ji Hun Park;Man Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4149-4157
    • /
    • 2024
  • Welding processes are used to connect several components in nuclear power plants. These welding processes can induce residual stress in welding joints, which has been identified as a significant factor in primary water stress corrosion cracking. Consequently, the assessment of welding residual stress plays a crucial role in determining the structural integrity of welded joints. In this study, a deep fuzzy neural networks (DFNN) with a rule-dropout method, which is an artificial intelligence (AI) method, was used to predict the residual stress of dissimilar metal welding. ABAQUS, a finite element analysis program, was used as the data collection tool to develop the AI model, and 6300 data instances were collected under 150 analysis conditions. A rule-dropout method and genetic algorithm were used to optimize the estimation performance of the DFNN model. DFNN with the rule-dropout model was compared to a deep neural network method, known as a general deep learning method, to evaluate the estimation performance of DFNN. In addition, a fuzzy neural network method and a cascaded support vector regression method conducted in previous studies were compared. Consequently, the estimation performance of the DFNN with the rule-dropout model was better than those of the comparison methods. The welding residual stress estimation results of this study are expected to contribute to the evaluation of the structural integrity of welded joints.

An Improved Machine Learning-Based Short Message Service Spam Detection System

  • Odukoya Oluwatoyin;Akinyemi Bodunde;Gooding Titus;Aderounmu Ganiyu
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.182-190
    • /
    • 2024
  • The use of Short Message Services (SMS) as a mechanism of communication has resulted to loss of sensitive information such as credit card details, medical information and bank account details (user name and password). Several Machine learning-based approaches have been proposed to address this problem, but they are still unable to detect modified SMS spam messages more accurately. Thus, in this research, a stack- ensemble of four machine learning algorithms consisting of Random Forest (RF), Logistic Regression (LR), Multilayer Perceptron (MLP), and Support Vector Machine (SVM), were employed to detect more accurately SMS spams. The simulation was carried out using Python Scikit- learn tools. The performance evaluation of the proposed model was carried out by benchmarking it with an existing model. The evaluation results showed that the proposed model has an increase of 3.03% of accuracy, 8.94% of Recall, 2.17% of F-measure; and a decrease of 4.55% of Precision over the existing model. In conclusion, the ensemble method performed better than any individual algorithms and can be adopted by the Network service providers for better Quality of Service.

Development of a Default Prediction Model for Vulnerable Populations Using Imbalanced Data Analysis (불균형 데이터 처리 기반의 취약계층 채무불이행 예측모델 개발)

  • Lee, Jong Hwa
    • The Journal of Information Systems
    • /
    • v.33 no.3
    • /
    • pp.175-185
    • /
    • 2024
  • Purpose This study aims to analyze the relationship between consumption patterns and default risk among financially vulnerable households in a rapidly changing economic environment. Financially vulnerable households are more susceptible to economic shocks, and their consumption patterns can significantly contribute to an increased risk of default. Therefore, this study seeks to provide a systematic approach to predict and manage these risks in advance. Design/methodology/approach The study utilizes data from the Korea Welfare Panel Study (KOWEPS) to analyze the consumption patterns and default status of financially vulnerable households. To address the issue of data imbalance, sampling techniques such as SMOTE, SMOTE-ENN, and SMOTE-Tomek Links were applied. Various machine learning algorithms, including Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine (SVM), were employed to develop the prediction model. The performance of the models was evaluated using Confusion Matrix and F1-score. Findings The findings reveal that when using the original imbalanced data, the prediction performance for the minority class (default) was poor. However, after applying imbalance handling techniques such as SMOTE, the predictive performance for the minority class improved significantly. In particular, the Random Forest model, when combined with the SMOTE-Tomek Links technique, showed the highest predictive performance, making it the most suitable model for default prediction. These results suggest that effectively addressing data imbalance is crucial in developing accurate default prediction models, and the appropriate use of sampling techniques can greatly enhance predictive performance.

Predicting antioxidant activity of compounds based on chemical structure using machine learning methods

  • Jinwoo Jung;Jeon-Ok Moon;Song Ih Ahn;Haeseung Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.6
    • /
    • pp.527-537
    • /
    • 2024
  • Oxidative stress is a well-established risk factor for numerous chronic diseases, emphasizing the need for efficient identification of potent antioxidants. Conventional methods for assessing antioxidant properties are often time-consuming and resource-intensive, typically relying on laborious biochemical assays. In this study, we investigated the applicability of machine learning (ML) algorithms for predicting the antioxidant activity of compounds based solely on their molecular structure. We evaluated the performance of five ML algorithms, Support Vector Machine (SVM), Logistic Regression (LR), XGBoost, Random Forest (RF), and Deep Neural Network (DNN), using a dataset of over 1,900 compounds with experimentally determined antioxidant activity. Both RF and SVM achieved the best overall performance, exhibiting high accuracy (> 0.9) and effectively distinguishing active and inactive compounds with high structural similarity. External validation using natural product data from the BATMAN database confirmed the generalizability of the RF and SVM models. Our results suggest that ML models serve as powerful tools to expedite the discovery of novel antioxidant candidates, potentially streamlining the development of future therapeutic interventions.

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

No-reference Image Quality Assessment With A Gradient-induced Dictionary

  • Li, Leida;Wu, Dong;Wu, Jinjian;Qian, Jiansheng;Chen, Beijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.288-307
    • /
    • 2016
  • Image distortions are typically characterized by degradations of structures. Dictionaries learned from natural images can capture the underlying structures in images, which are important for image quality assessment (IQA). This paper presents a general-purpose no-reference image quality metric using a GRadient-Induced Dictionary (GRID). A dictionary is first constructed based on gradients of natural images using K-means clustering. Then image features are extracted using the dictionary based on Euclidean-norm coding and max-pooling. A distortion classification model and several distortion-specific quality regression models are trained using the support vector machine (SVM) by combining image features with distortion types and subjective scores, respectively. To evaluate the quality of a test image, the distortion classification model is used to determine the probabilities that the image belongs to different kinds of distortions, while the regression models are used to predict the corresponding distortion-specific quality scores. Finally, an overall quality score is computed as the probability-weighted distortion-specific quality scores. The proposed metric can evaluate image quality accurately and efficiently using a small dictionary. The performance of the proposed method is verified on public image quality databases. Experimental results demonstrate that the proposed metric can generate quality scores highly consistent with human perception, and it outperforms the state-of-the-arts.