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ABSTRACT Oxidative stress is a well-established risk factor for numerous chronic 
diseases, emphasizing the need for efficient identification of potent antioxidants. 
Conventional methods for assessing antioxidant properties are often time-consum-
ing and resource-intensive, typically relying on laborious biochemical assays. In this 
study, we investigated the applicability of machine learning (ML) algorithms for 
predicting the antioxidant activity of compounds based solely on their molecular 
structure. We evaluated the performance of five ML algorithms, Support Vector Ma-
chine (SVM), Logistic Regression (LR), XGBoost, Random Forest (RF), and Deep Neural 
Network (DNN), using a dataset of over 1,900 compounds with experimentally deter-
mined antioxidant activity. Both RF and SVM achieved the best overall performance, 
exhibiting high accuracy (> 0.9) and effectively distinguishing active and inactive 
compounds with high structural similarity. External validation using natural product 
data from the BATMAN database confirmed the generalizability of the RF and SVM 
models. Our results suggest that ML models serve as powerful tools to expedite the 
discovery of novel antioxidant candidates, potentially streamlining the development 
of future therapeutic interventions.

INTRODUCTION
Oxidative stress is a recognized consequence of an imbal-

ance between free radical generation and the body’s antioxidant 
defenses, ultimately leading to cellular and tissue damage [1]. 
This imbalance has been implicated in the development and 
progression of various diseases, including cardiovascular disease, 
neurodegenerative disease, and cancers. Therefore, the identifica-
tion of novel antioxidant substances is imperative for advancing 
therapeutic strategies aimed at mitigating these health issues [2,3]. 
Traditionally, the assessment of antioxidant capacity has relied on 
in vitro biochemical assays, such as the 2,2-diphenyl-1-picrylhy-
drazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sul-
fonic acid) (ABTS) tests [4,5]. While the DPPH and ABTS assays 
are effective, they are often labor-intensive and time-consuming, 

requiring substantial amounts of sample material. Moreover, the 
complexity of these methods limits their scalability and efficiency 
and hinders the high-throughput screening of compounds, par-
ticularly in early-stage drug discovery processes.

The emergence of machine learning (ML) technologies offers 
promising alternative approaches to enhance the efficiency of 
antioxidant identification [6,7]. ML has the potential to overcome 
the limitations of traditional methods by facilitating rapid, cost-
effective in silico screening of vast chemical libraries for antioxi-
dant activity [8,9]. By leveraging accumulated histological data 
sets of chemical bioassays and advanced algorithmic models, ML 
can predict the antioxidant potential of compounds solely based 
on their chemical structures. This capability expedites the discov-
ery process and enriches our understanding of structure-activity 
relationships within antioxidant compounds [10].
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This study investigated the applicability of various ML al-
gorithms for predicting the antioxidant activity of chemical 
compounds. We curated a dataset of chemical structures anno-
tated with experimentally determined antioxidant activities and 
employed well-established ML algorithms to develop predictive 
models. We demonstrated the efficacy of these models in predict-
ing antioxidant activities and assessed the reliability of prediction 
as a preliminary screening tool before extensive in vitro valida-
tion.

METHODS

Acquisition of antioxidant activity data

Publicly available antioxidant activity data for a diverse range 
of compounds was retrieved from the PubChem database. To 
control methodological consistency within the dataset, data 
was exclusively sourced from well-established assays: ABTS and 
DPPH. ABTS and DPPH assays quantify a compound's free radi-
cal scavenging (ABTS) or reduction (DPPH) capacity, reflected 
by a measurable color change [4,5]. Selection of these assays was 
based on their widespread adoption in rapid antioxidant potential 
screening due to their simplicity and effectiveness. PubChem 
searches employing the keywords "DPPH" and "ABTS" identified 
a total of 1,651 DPPH and 366 ABTS assays encompassing 19,454 
compounds.

Data preprocessing

To eliminate redundancy arising from compounds with identi-
cal structures but varying identifiers, the International Union of 
Pure and Applied Chemistry (IUPAC) InChIKeys was adopted 
as the unique identifier. The RDKit Python package was utilized 
to convert the Simplified Molecular Input Line Entry System 
(SMILES) strings for each compound into IUPAC InChIKeys. 
This process refined the initial 19,454 PubChem CIDs into 10,053 
unique compounds. Subsequently, Extended-Connectivity Fin-
gerprints (ECFP) with a radius of 4 (ECFP-4) were generated us-
ing the RDKit Python package to represent chemical structures 
based on each compound’s SMILES string. Compounds were 
categorized into four activity groups for each assay: ‘Active’, ‘In-
active’, ‘Unspecified’, or ‘Inconclusive’, and those with solely ‘In-
conclusive’ and ‘Unspecified’ designations across all assays were 
excluded. In addition, compounds exhibiting inconsistent activity 
results between the two assays were eliminated. To enhance the 
dataset's comprehensiveness, 24 well-known antioxidant com-
pounds documented in prior studies were incorporated and des-
ignated as the ‘Active’ set [11].

Structural similarity calculation

The Tanimoto coefficient [12] between each pair of all com-
pounds was computed using their ECFP-4 fingerprint via the 
DataStructs Python package. ECFP-4 fingerprint is a binary vec-
tor of 2,048 bits in length, where each bit represents the presence 
(set to 1) or absence (set to 0) of specific circular substructures 
within a molecule. The Tanimoto coefficient itself is a value be-
tween 0 and 1, representing the degree of structural similarity 
between two molecules. A higher coefficient indicates a greater 
degree of structural similarity. The calculation is as follows:

Tc =
Nab

Na + Nb – Nab

where Nab is the number of common features between the two 
compounds, Na is the total number of features in compound A, 
and Nb is the total number of features in compound B. To visual-
ize the relationships between the compounds based on the cal-
culated Tanimoto coefficients, a compound-compound network 
was constructed. In this network, each compound is represented 
by a node, and edges connect nodes that exhibit a Tanimoto coef-
ficient exceeding a predefined threshold (set to 0.7 in this case). 
Cytoscape 3 (version 10.3.1), an open-source software platform 
for network visualization, was used to generate this network rep-
resentation.

ML model training and evaluation

Five ML algorithms were chosen for their capability to model 
complex relationships between molecular structure and antioxi-
dant activity: Support Vector Machine (SVM), Logistic Regres-
sion (LR), XGBoost (XGB), Random Forest (RF), and Deep Neu-
ral Network (DNN). Each model was trained via functions from 
the scikit-learn Python package with default parameter settings 
to prevent overfitting and ensure generalizability (Table 1, Sup-
plementary Fig. 1). For robust and unbiased evaluation, five-fold 
cross-validation was conducted using two data splitting strategies: 
(i) random splitting and (ii) scaffold splitting. To achieve scaffold 
splitting, all compounds were classified into scaffold groups using 
a Scaffold Network Generator [13] implemented in the RDKit Py-
thon package. This tool organized compounds into a hierarchical 
tree structure, with groups ranging from single-ring to a maxi-
mum of 15-ring structures. Consequently, 1,931 compounds were 
categorized into 778 scaffold groups. The training data was then 
split based on scaffold membership, ensuring the testing set con-
tained compounds with unseen scaffold structures. Using both 
splitting strategies, the five-fold cross-validation was repeated 100 
times. Performance metrics including accuracy, precision, recall, 
F1-score, and area under the receiver operating characteristic 
curve (AUROC) were computed for each iteration across all five 
models using the scikit-learn Python package.
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RESULTS

Overall analytic process

This study evaluated well-established ML algorithms for pre-

dicting the antioxidant activity of compounds based solely on 
their molecular structure represented by SMILES strings (Fig. 
1). A dataset of 19,454 compounds with antioxidant activity data 
and corresponding SMILES information was collected from Pub-
Chem and literature searches. Following a rigorous data-cleaning 

Table 1. Machine learning models and hyperparameter settings

Method Class (Package) Parameter

SVM SVC (scikit-learn) C: 1.0, kernel: rbf, degree: 3, gamma: scale, coef: 0.0, shrinking: True, probability: True, 
tol: 0.001, class weight: False, max_iter: 1, decision function shape: ovr, break ties: 
False

LR LogisticRegression (scikit-learn) penalty: l2, dual: False, tol: 0.0001, C: 1.0, fit intercept: True, intercept scaling: 1, class 
weight: None, solver: lbfgs, max iter: 100, multi class: auto, wart start: False

XGB XGBClassifier (xgboost) booster: gbtree, learning rate: 0.3, gamma: 0, max depth: 6, min child weight: 1, max 
delta step: 0, subsample: 1, sampling method: uniform, colsample bytree: 1, colsample 
bylevel: 1, colsample bynode: 1, lambda: 1, alpha: 0, tree method: auto, scale pos 
weight: 1, refresh leaf: 1, max leaves: 0, max bin: 256, num parallel tree: 1

RF RandomForestClassifier
   (scikit-learn)

n estimator: 100, criterion: gini, max depth: None, min samples split: 2, min samples 
leaf: 1, min weight fraction leaf: 0, max features: sqrt, max leaf nodes: None, min 
impurity decrease: 0, bootstrap: True, oob score: False, warm strat: False, class weight: 
None, ccp alpha: 0, max samples: None, monotonic: None

DNN Model (TensorFlow) k: 5, input shape: 2048, layers: 2048, 1024, 512, 256, train size: 0.6, validation size: 
0.2, test size: 0.2l2 regularization: null, batch normalization: False, activation 
function: relu, loss function: BinaryCrossentropy, learning rate: 0.001, optimizer: 
Adam, metric: BinaryAccuracy, AUC, early stop monitor: val loss, early stop patience: 
10, class weight: False, batch size: 256, epochs: 1000, seed: 42

SVM, Support Vector Machine; LR, Logistic Regression; XGB, XGBoost; RF, Random Forest; DNN, Deep Neural Network.
Figure 1
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Fig. 1. Schematic illustration of the analytic workflow for constructing antioxidant compound prediction models employing five ML algo-
rithms. ML, machine learning; ABTS, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); DPPH, 2,2-diphenyl-1-picrylhydrazyl; SMILES, Simplified 
Molecular Input Line Entry System; ECFP-4, Extended-Connectivity Fingerprints with a radius of 4; RF, Random Forest; SVM, Support Vector Machine; 
XGB, XGBoost; LR, Logistic Regression; DNN, Deep Neural Network.
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Fig. 2. Compound structural diversity and its association with antioxidant activity. (A) Network visualization of compound relationships, where 
nodes represent individual compounds and edges connecting the nodes indicate high structural similarity between compounds (Tanimoto coef-
ficient exceeding 0.7). Nodes are colored according to their experimentally determined antioxidant activity (gray for inactive, red for active). The net-
work is segregated into three sub-panels: (i) a network containing only interconnected active compounds, (ii) a network with solely interconnected 
inactive compounds, and (iii) a network with a mixture of active and inactive interconnected compounds. (B) A representative example of a network 
module containing both active and inactive compounds. This highlights the potential for structurally similar compounds to exhibit diverse antioxi-
dant properties. The border color of each node corresponds to its experimentally determined antioxidant activity (gray for inactive, red for active).
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process, a final set of 1,931 compounds (1,092 active, 839 inactive) 
was used to develop antioxidant activity prediction models. The 
ECFP-4 fingerprints, encoding the chemical environment of each 
molecule, were used as input features for the five ML algorithms 
(SVM, LR, XGB, RF, and DNN). A cross-validation scheme was 
implemented to identify the most suitable model for predicting 
antioxidant activity. The generalizability of the chosen model was 
further evaluated using external datasets of natural product com-
pounds.

Structural diversity of compounds and its relationship 
to antioxidant activity

To quantify the chemical diversity within the dataset and 
explore potential structural relationships associated with anti-
oxidant activities, pairwise Tanimoto similarity coefficients [12] 
were calculated for all compounds. A compound-compound 
network, where nodes represented individual compounds, with 
edges connecting nodes that shared a Tanimoto coefficient ex-

ceeding a threshold of 0.7, was constructed to explore structurally 
similar compounds in the collected compounds (Fig. 2A). This 
network revealed that active and inactive compounds formed 
separate clusters, suggesting a positive correlation between struc-
tural similarity and antioxidant activity. However, an intriguing 
exception was observed within a cluster enriched with flavonoids 
structurally related to chrysin, a potent antioxidant flavone (Fig. 
2B). While all compounds within this cluster shared a flavone 
backbone similar to the potent antioxidant chrysin, their anti-
oxidant capacities diverged. This highlights the importance of 
the specific arrangement of functional groups within the flavone 
structure. Chrysin, with hydroxyl groups at the 5 and 7 positions 
of the A ring, exhibits strong antioxidant activity due to the well-
documented radical scavenging properties of these groups [14]. 
The addition of hydroxyl group at the 3' position of the B ring (as 
in apigenin) or at both the 3' and 4' positions (as in luteolin) en-
hances antioxidative activity. However, the addition of a hydroxyl 
group at the 2' position of the B ring (as in 5,7,2'-trihydroxy-
flavone) does not result in antioxidative effects. Substitution of 

Fig. 3. Performance comparison of five ML models. (A, B) Representative receiver operating characteristic (ROC) curves and precision-recall curves 
were obtained from a single iteration of 5-fold cross-validation with (A) random splitting and (B) scaffold splitting. ML, machine learning; SVM, Sup-
port Vector Machine; LR, Logistic Regression; XGB, XGBoost; RF, Random Forest; DNN, Deep Neural Network.

Figure 3

A

B

A

B



532

https://doi.org/10.4196/kjpp.2024.28.6.527Korean J Physiol Pharmacol 2024;28(6):527-537

Jung J et al

hydroxyl groups with methyl groups diminishes activity; for ex-
ample, tectochrysin and acacetin (methylated at the 7 position of 
the A ring and 3' position of the B ring, respectively) and apigenin 
7,4'-dimethyl ether (methylated at the 7 position of the A ring and 
4' position of the B ring) both lose their antioxidative properties. 
These observations highlight that the hydroxyl groups at the 5 
and 7 positions on the A ring, with an unblocked 3' hydroxyl 
group on the B ring, are crucial for the antioxidant activity of fla-
vones. This data suggests that while overall structural features are 
informative in determining antioxidant activity, it is the precise 
arrangement of functional groups within the molecule that ulti-
mately dictates its efficacy.

Model performance and evaluation

Five ML models, including SVM, LR, XGB, RF, and DNN, were 
employed to learn these subtle yet important structural features 
for predicting antioxidant activity based on ECFP-4 fingerprints. 
Model performance was evaluated using two five-fold cross-
validation (5-fold CV) schemes: random splitting and scaffold 
splitting (Fig. 3). Random splitting divided the training data into 
five equal folds, where each fold is used for testing once while the 
remaining four are used for training. On the other hand, scaffold 
splitting grouped structurally similar compounds together in 
each fold. This approach evaluates the model's ability to predict 
the activity of compounds with novel scaffold structures not pres-
ent in the training data, a crucial capability for discovering novel 
antioxidants with distinct chemical backbones (known as scaf-
fold hopping).

All models achieved commendable performance on the ran-
dom splitting CV (Fig. 3A and Table 2). RF outperformed other 
models in all metrics, including accuracy (0.908 ± 0.004), preci-
sion (0.912 ± 0.004), recall (0.927 ± 0.005), F1 score (0.919 ± 0.003), 
and AUROC (0.968 ± 0.002). SVM and XGB showed competitive 
performance with accuracies exceeding 0.900 and AUROC above 
0.955. LR performed similarly but with slightly lower recall and 
F1 scores. DNN, while achieving a respectable accuracy (0.877 
± 0.015), exhibited higher variability in its metrics, suggesting 
potential overfitting or sensitivity to the composition of training 
data.

Notably, all models maintained good performance on scaffold-
splitting CVs, albeit their scores were slightly lower compared to 
random-splitting (Fig. 3B and Table 3). All models except DNN 
maintained high accuracies above 0.900, with SVM and XGB re-
cording the highest (0.906 ± 0.007). Precision was notably higher 
for LR (over 0.918), while RF and SVM demonstrated superior 
recall rates (both exceeding 0.950). F1 scores remained consistent 
and high for SVM, LR, XGB, and RF. However, DNN's perfor-
mance significantly declined, suggesting its lower robustness 
to scaffold-based splits. Similarly, AUROC scores for SVM, LR, 
XGB, and RF remained high, demonstrating their ability to dis-
tinguish classes across diverse data segmentation.

Overall, the results suggest that SVM and RF are well-suited for 
predicting antioxidant activity based on ECFP-4 fingerprints, ex-
hibiting both high accuracy and generalizability across splitting 
methodologies.

Table 2. Model performance obtained from 5-fold CV with random-splitting

SVM LR XGB RF DNN

Accuracy 0.903 ± 0.003 0.898 ± 0.004 0.9 ± 0.005 0.908 ± 0.004 0.877 ± 0.015
Precision 0.907 ± 0.003 0.908 ± 0.004 0.907 ± 0.005 0.912 ± 0.004 0.889 ± 0.02
Recall 0.923 ± 0.004 0.913 ± 0.005 0.918 ± 0.006 0.927 ± 0.005 0.889 ± 0.025
F1 score 0.915 ± 0.003 0.91 ± 0.003 0.912 ± 0.005 0.919 ± 0.003 0.891 ± 0.014
AUROC 0.959 ± 0.001 0.955 ± 0.002 0.955 ± 0.003 0.968 ± 0.002 0.945 ± 0.012

Performance metrics were obtained across 100 iterations of 5-fold CV with random-splitting (average ± standard deviation). CV, cross-
validation; SVM, Support Vector Machine; LR, Logistic Regression; XGB, XGBoost; RF, Random Forest; DNN, Deep Neural Network, 
AUROC, area under the receiver operating characteristic curve.

Table 3. Model performance from 5-fold CV with scaffold-splitting

SVM LR XGB RF DNN

Accuracy 0.906 ± 0.005 0.905 ± 0.007 0.906 ± 0.007 0.904 ± 0.006 0.801 ± 0.03
Precision 0.902 ± 0.005 0.918 ± 0.007 0.917 ± 0.007 0.9 ± 0.006 0.834 ± 0.041
Recall 0.958 ± 0.005 0.935 ± 0.006 0.939 ± 0.008 0.958 ± 0.006 0.811 ± 0.064
F1 score 0.929 ± 0.004 0.926 ± 0.005 0.927 ± 0.006 0.927 ± 0.004 0.818 ± 0.036
AUROC 0.968 ± 0.003 0.965 ± 0.003 0.964 ± 0.004 0.968 ± 0.003 0.886 ± 0.028

Performance metrics were obtained across 100 iterations of 5-fold CV with scaffold-splitting (average ± standard deviation). CV, cross-
validation; SVM, Support Vector Machine; LR, Logistic Regression; XGB, XGBoost; RF, Random Forest; DNN, Deep Neural Network, 
AUROC, area under the receiver operating characteristic curve.
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Discriminative power of RF and SVM on the 
antioxidant activity of structurally similar compounds

To assess the ability of RF and SVM models to capture subtle 
structural features that are important for predicting antioxidant 

activity, we investigated their performance in differentiating be-
tween active and inactive compounds with high structural simi-
larity. We focused on three network modules, each containing 
reference active compounds (chrysin, eriophorin A, and 4-(1H-
indol-2-yl)aniline) (Fig. 4). Within the chrysin module (Fig. 2B), 

Fig. 4. Comparison of predicted antioxidant activity scores for structurally similar compounds. (A) Predicted activity scores of compounds with-
in the chrysin network module, as determined by RF and SVM models. (B, C) Network modules for (B) eriophorin A and (C) 4-(1H-indol-2-yl)aniline. The 
left panel shows the network where nodes represent compounds and edges represent high structural similarity (Tanimoto coefficient exceeding 0.7). 
The right panel displays the corresponding predicted activity scores obtained by the RF and SVM models for each compound within the respective 
network module. The border color of each node indicates its experimentally determined antioxidant activity (gray for inactive, red for active). RF, Ran-
dom Forest; SVM, Support Vector Machine.
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both models accurately classified chrysin and luteolin as active 
and apigenin as inactive, despite their high Tanimoto coefficient 
(> 0.7) (Fig. 4A). However, their performance diverged in other 
modules. Specifically, the RF model exhibited superior discrimi-
natory power in the eriophorin A module (Fig. 4B), correctly 
classifying eriophorin A as active and eriophorin B and cajanin 
as inactive, even with their high structural similarity. Conversely, 
the SVM model, while differentiating active from inactive com-
pounds, underestimated eriophorin A's activity, classifying it as 

inactive. A similar trend emerged in the 4-(1H-indol-2-yl)aniline 
module (Fig. 4C). The RF model accurately predicted active com-
pounds, while the SVM model struggled. These findings dem-
onstrate that, while both models can discriminate between some 
highly similar compounds, the RF model exhibits a stronger 
ability to distinguish active and inactive compounds with a high 
degree of structural similarity across diverse scaffold compounds. 
This suggests that RF models may be better suited to capture sub-
tle structural variations that significantly influence antioxidant 

Table 4. Top ten predicted antioxidant compounds from the BATMAN database

Compound PubChem CID Structure SVM RF No. of 
reference

Reference 
reporting 

antioxidant 
activity

Quercetin hydrate 16212154 1.00 1.00 29 [16]

Cyanidin chloride 68247 0.99 0.99 3,860 [17]

Quercetagetin 5281680 1.00 0.99 679 [18]

Quercetin 3-O-rhamnoside 5353915 0.99 1 6 [19]

Hispolon 10082188 0.99 1.00 86 [20]

Avicularin 5490064 0.98 1 1,056 [21]

Isoquercitrin 51402807 0.98 1 2,246 [22]

Delphinidin chloride 128853 1.00 0.99 1,003 [23]

Delphinidin 68245 1.00 0.99 2,624 [17]

Ellagic acid dihydrate 16760409 0.99 0.99 15 -

BATMAN, Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine; SVM, Support Vector Machine; RF, 
Random Forest.
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activity.

Prediction of antioxidant activity of natural products

To evaluate the generalizability of SVM and RF models, we 
performed external validation using a dataset of natural product 
compounds from the BATMAN (Bioinformatics Analysis Tool 
for Molecular mechANism of Traditional Chinese Medicine) 
database [15]. BATMAN offers a comprehensive resource for 
bioactive compounds found in traditional medicine and other 
natural products. We retrieved chemical structure data for 1,708 
well-defined ingredient compounds extracted from 8,404 me-
dicinal plants. A subset of 1,594 compounds not included in the 
training set was selected for unbiased evaluation. These natural 
compounds were then subjected to the SVM and RF models to 
predict their potential antioxidant activity (Supplementary Table 
1). Subsequently, the top candidates with the highest average 
scores obtained from both models were shortlisted for further 
investigation. Notably, this shortlist was significantly enriched for 

highly hydroxylated flavonoids (Table 4). These specific classes 
of compounds are recognized for exhibiting antioxidant activity 
through free radical scavenging, metal chelation, and involve-
ment in redox reactions [16-23].

To explore natural compounds with novel antioxidant bioac-
tivities, a literature search was conducted using SciFinder [24]. 
This search yielded publication counts for each compound, pro-
viding an indicator of their prior investigation in the context of 
biological activity. Most of the top 10 compounds are well-studied 
(median publication count = 841), suggesting their high potential 
for bioactivity. Among them, we focused on two particularly in-
triguing compounds, ellagic acid dihydrate and strictinin, which 
had less than 30 references each, potentially indicating a lack of 
previous exploration regarding their antioxidant properties (Fig. 
5). Ellagic acid dihydrate is a crystalline form of ellagic acid, a 
well-known polyphenol found in various fruits and nuts, contain-
ing two water molecules within its structure. While ellagic acid 
itself exhibits potent antioxidant activity, exceeding established 
antioxidants like butylated hydroxytoluene and vitamin E in Figure 5

No. of referenceNo. of structurally similar 
active compounds

R
an

ki
ng

Fig. 5. Distribution of publication counts and number of structurally similar active compounds for top-scoring compounds. Blue bars rep-
resent the number of references associated with the top 20 compounds identified through RF and SVM models. The red bars represent the number 
of structurally similar active compounds present within the training datasets for these same top-ranked compounds. The compounds were ranked 
based on their average scores obtained from both models. RF, Random Forest; SVM, Support Vector Machine.



536

https://doi.org/10.4196/kjpp.2024.28.6.527Korean J Physiol Pharmacol 2024;28(6):527-537

Jung J et al

inhibiting lipid peroxidation [25], the specific activity of its dihy-
drate form remains unexplored. Given the established bioactivity 
of ellagic acid, its dihydrate form is a promising candidate for 
further investigation with a high probability of exhibiting antioxi-
dant properties. Strictinin, a hydrolyzable ellagitannin, has also 
been demonstrated to possess significant antioxidant properties 
[26]. Multiple studies have demonstrated that strictinin possesses 
potent antioxidant properties that can inhibit lipid peroxidation 
and scavenge free radicals [27,28]. Collectively, our ML approach 
effectively prioritizes promising candidates for further investiga-
tion of their potential antioxidant bioactivities.

DISCUSSION
This study evaluated the applicability of various ML algorithms 

for predicting the antioxidant activity of compounds solely based 
on their chemical structure information. In the current study, 
we aimed to investigate a baseline performance for these models 
within a standardized framework. To facilitate a controlled initial 
assessment, all models were evaluated using their default hyper-
parameter settings. Under these conditions, RF and SVM demon-
strated superior performance compared to other algorithms LR, 
XGB, and DNN. Notably, DNN displayed the lowest performance 
among the five models. This finding aligns with the known sus-
ceptibility of DNNs to overfitting on datasets with limited sample 
sizes. The relatively small size of our dataset likely contributed to 
its underperformance, emphasizing the critical role of data avail-
ability and characteristics in model selection. For robust model 
comparisons, future research should incorporate a rigorous hy-
perparameter tuning process to optimize the potential of each 
algorithm.

To simply focus on the applicability of ML in predicting antiox-
idant activity based on chemical structure, we utilized structural 
features, particularly ECFP-4 fingerprints (a widely employed 
representation of compound structure). These fingerprints ef-
fectively captured subtle yet critical structural features associated 
with antioxidant activity. Future research should incorporate 
feature importance analysis to identify and interpret the most 
significant features influencing the models' predictions in the 
context of antioxidant activity. Expanding the feature space to 
include additional data sources, such as chemical descriptors and 
chemical-induced transcriptomic data, alongside ECFP-4 finger-
prints, could be explored to enhance model generalizability and 
provide a more comprehensive understanding of the structure-
function relationship in antioxidant activity.

While in silico approaches offer significant promise, experi-
mental validation remains an essential step. Compounds pre-
dicted by the ML models to have high antioxidant activity should 
be subjected to biochemical assays to confirm their activity. This 
step is critical for bridging the gap between computational predic-
tions and practical applications, ensuring that predictions trans-

late reliably into real-world benefits. We propose that our models 
can serve as a preliminary screening tool, facilitating the selection 
of candidate compounds for subsequent in vitro validation.
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