• Title/Summary/Keyword: support vector regression.

Search Result 554, Processing Time 0.022 seconds

Support Vector Median Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.67-74
    • /
    • 2003
  • Median regression analysis has robustness properties which make it an attractive alternative to regression based on the mean. Support vector machine (SVM) is used widely in real-world regression tasks. In this paper, we propose a new SV median regression based on check function. And we illustrate how this proposed SVM performs and compare this with the SVM based on absolute deviation loss function.

  • PDF

A Reliability Prediction Method for Weapon Systems using Support Vector Regression (지지벡터회귀분석을 이용한 무기체계 신뢰도 예측기법)

  • Na, Il-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.675-682
    • /
    • 2013
  • Reliability analysis and prediction of next failure time is critical to sustain weapon systems, concerning scheduled maintenance, spare parts replacement and maintenance interventions, etc. Since 1981, many methodology derived from various probabilistic and statistical theories has been suggested to do that activity. Nowadays, many A.I. tools have been used to support these predictions. Support Vector Regression(SVR) is a nonlinear regression technique extended from support vector machine. SVR can fit data flexibly and it has a wide variety of applications. This paper utilizes SVM and SVR with combining time series to predict the next failure time based on historical failure data. A numerical case using failure data from the military equipment is presented to demonstrate the performance of the proposed approach. Finally, the proposed approach is proved meaningful to predict next failure point and to estimate instantaneous failure rate and MTBF.

REGRESSION WITH CENSORED DATA BY LEAST SQUARES SUPPORT VECTOR MACHINE

  • Kim, Dae-Hak;Shim, Joo-Yong;Oh, Kwang-Sik
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.25-34
    • /
    • 2004
  • In this paper we propose a prediction method on the regression model with randomly censored observations of the training data set. The least squares support vector machine regression is applied for the regression function prediction by incorporating the weights assessed upon each observation in the optimization problem. Numerical examples are given to show the performance of the proposed prediction method.

An Application of Support Vector Machines to Personal Credit Scoring: Focusing on Financial Institutions in China (Support Vector Machines을 이용한 개인신용평가 : 중국 금융기관을 중심으로)

  • Ding, Xuan-Ze;Lee, Young-Chan
    • Journal of Industrial Convergence
    • /
    • v.16 no.4
    • /
    • pp.33-46
    • /
    • 2018
  • Personal credit scoring is an effective tool for banks to properly guide decision profitably on granting loans. Recently, many classification algorithms and models are used in personal credit scoring. Personal credit scoring technology is usually divided into statistical method and non-statistical method. Statistical method includes linear regression, discriminate analysis, logistic regression, and decision tree, etc. Non-statistical method includes linear programming, neural network, genetic algorithm and support vector machine, etc. But for the development of the credit scoring model, there is no consistent conclusion to be drawn regarding which method is the best. In this paper, we will compare the performance of the most common scoring techniques such as logistic regression, neural network, and support vector machines using personal credit data of the financial institution in China. Specifically, we build three models respectively, classify the customers and compare analysis results. According to the results, support vector machine has better performance than logistic regression and neural networks.

GACV for partially linear support vector regression

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.391-399
    • /
    • 2013
  • Partially linear regression is capable of providing more complete description of the linear and nonlinear relationships among random variables. In support vector regression (SVR) the hyper-parameters are known to affect the performance of regression. In this paper we propose an iterative reweighted least squares (IRWLS) procedure to solve the quadratic problem of partially linear support vector regression with a modified loss function, which enables us to use the generalized approximate cross validation function to select the hyper-parameters. Experimental results are then presented which illustrate the performance of the partially linear SVR using IRWLS procedure.

Two-step LS-SVR for censored regression

  • Bae, Jong-Sig;Hwang, Chang-Ha;Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.2
    • /
    • pp.393-401
    • /
    • 2012
  • This paper deals with the estimations of the least squares support vector regression when the responses are subject to randomly right censoring. The estimation is performed via two steps - the ordinary least squares support vector regression and the least squares support vector regression with censored data. We use the empirical fact that the estimated regression functions subject to randomly right censoring are close to the true regression functions than the observed failure times subject to randomly right censoring. The hyper-parameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation function. Experimental results are then presented which indicate the performance of the proposed procedure.

Estimating Software Development Cost using Support Vector Regression (Support Vector Regression을 이용한 소프트웨어 개발비 예측)

  • Park, Chan-Kyoo
    • Korean Management Science Review
    • /
    • v.23 no.2
    • /
    • pp.75-91
    • /
    • 2006
  • The purpose of this paper is to propose a new software development cost estimation method using SVR(Support Vector Regression) SVR, one of machine learning techniques, has been attracting much attention for its theoretic clearness and food performance over other machine learning techniques. This paper may be the first study in which SVR is applied to the field of software cost estimation. To derive the new method, we analyze historical cost data including both well-known overseas and domestic software projects, and define cost drivers affecting software cost. Then, the SVR model is trained using the historical data and its estimation accuracy is compared with that of the linear regression model. Experimental results show that the SVR model produces more accurate prediction than the linear regression model.

Fuzzy Semiparametric Support Vector Regression for Seasonal Time Series Analysis

  • Shim, Joo-Yong;Hwang, Chang-Ha;Hong, Dug-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.335-348
    • /
    • 2009
  • Fuzzy regression is used as a complement or an alternative to represent the relation between variables among the forecasting models especially when the data is insufficient to evaluate the relation. Such phenomenon often occurs in seasonal time series data which require large amount of data to describe the underlying pattern. Semiparametric model is useful tool in the case where domain knowledge exists about the function to be estimated or emphasis is put onto understandability of the model. In this paper we propose fuzzy semiparametric support vector regression so that it can provide good performance on forecasting of the seasonal time series by incorporating into fuzzy support vector regression the basis functions which indicate the seasonal variation of time series. In order to indicate the performance of this method, we present two examples of predicting the seasonal time series. Experimental results show that the proposed method is very attractive for the seasonal time series in fuzzy environments.

Estimation of Software Reliability with Immune Algorithm and Support Vector Regression (면역 알고리즘 기반의 서포트 벡터 회귀를 이용한 소프트웨어 신뢰도 추정)

  • Kwon, Ki-Tae;Lee, Joon-Kil
    • Journal of Information Technology Services
    • /
    • v.8 no.4
    • /
    • pp.129-140
    • /
    • 2009
  • The accurate estimation of software reliability is important to a successful development in software engineering. Until recent days, the models using regression analysis based on statistical algorithm and machine learning method have been used. However, this paper estimates the software reliability using support vector regression, a sort of machine learning technique. Also, it finds the best set of optimized parameters applying immune algorithm, changing the number of generations, memory cells, and allele. The proposed IA-SVR model outperforms some recent results reported in the literature.

Electricity Demand Forecasting based on Support Vector Regression (Support Vector Regression에 기반한 전력 수요 예측)

  • Lee, Hyoung-Ro;Shin, Hyun-Jung
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.351-361
    • /
    • 2011
  • Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.