• Title/Summary/Keyword: support vector regression.

Search Result 554, Processing Time 0.037 seconds

Group Contribution Method and Support Vector Regression based Model for Predicting Physical Properties of Aromatic Compounds (Group Contribution Method 및 Support Vector Regression 기반 모델을 이용한 방향족 화합물 물성치 예측에 관한 연구)

  • Kang, Ha Yeong;Oh, Chang Bo;Won, Yong Sun;Liu, J. Jay;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • To simulate a process model in the field of chemical engineering, it is very important to identify the physical properties of novel materials as well as existing materials. However, it is difficult to measure the physical properties throughout a set of experiments due to the potential risk and cost. To address this, this study aims to develop a property prediction model based on the group contribution method for aromatic chemical compounds including benzene rings. The benzene rings of aromatic materials have a significant impact on their physical properties. To establish the prediction model, 42 important functional groups that determine the physical properties are considered, and the total numbers of functional groups on 147 aromatic chemical compounds are counted to prepare a dataset. Support vector regression is employed to prepare a prediction model to handle sparse and high-dimensional data. To verify the efficacy of this study, the results of this study are compared with those of previous studies. Despite the different datasets in the previous studies, the comparison indicated the enhanced performance in this study. Moreover, there are few reports on predicting the physical properties of aromatic compounds. This study can provide an effective method to estimate the physical properties of unknown chemical compounds and contribute toward reducing the experimental efforts for measuring physical properties.

Application of Asymmetric Support Vector Regression Considering Predictive Propensity (예측성향을 고려한 비대칭 서포트벡터 회귀의 적용)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.1
    • /
    • pp.71-82
    • /
    • 2022
  • Most of the predictions using machine learning are neutral predictions considering the symmetrical situation where the predicted value is not smaller or larger than the actual value. However, in some situations, asymmetric prediction such as over-prediction or under-prediction may be better than neutral prediction, and it can induce better judgment by providing various predictions to decision makers. A method called Asymmetric Twin Support Vector Regression (ATSVR) using TSVR(Twin Support Vector Regression), which has a fast calculation time, was proposed by controlling the asymmetry of the upper and lower widths of the ε-tube and the asymmetry of the penalty with two parameters. In addition, by applying the existing GSVQR and the proposed ATSVR, prediction using the prediction propensities of over-prediction, under-prediction, and neutral prediction was performed. When two parameters were used for both GSVQR and ATSVR, it was possible to predict according to the prediction propensity, and ATSVR was found to be more than twice as fast in terms of calculation time. On the other hand, in terms of accuracy, there was no significant difference between ATSVR and GSVQR, but it was found that GSVQR reflected the prediction propensity better than ATSVR when checking the figures. The accuracy of under-prediction or over-prediction was lower than that of neutral prediction. It seems that using both parameters rather than using one of the two parameters (p_1,p_2) increases the change in the prediction tendency. However, depending on the situation, it may be better to use only one of the two parameters.

Effect of Dimension Reduction on Prediction Performance of Multivariate Nonlinear Time Series

  • Jeong, Jun-Yong;Kim, Jun-Seong;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.312-317
    • /
    • 2015
  • The dynamic system approach in time series has been used in many real problems. Based on Taken's embedding theorem, we can build the predictive function where input is the time delay coordinates vector which consists of the lagged values of the observed series and output is the future values of the observed series. Although the time delay coordinates vector from multivariate time series brings more information than the one from univariate time series, it can exhibit statistical redundancy which disturbs the performance of the prediction function. We apply dimension reduction techniques to solve this problem and analyze the effect of this approach for prediction. Our experiment uses delayed Lorenz series; least squares support vector regression approximates the predictive function. The result shows that linearly preserving projection improves the prediction performance.

Tension Control of the Let-off and Take-up System in the Weaving Process Based on Support Vector Regression

  • Han, Dong-Chang;Back, Woon-Jae;Lee, Sang-Hwa;Lee, Hyuk-Jin;Noh, Seok-Hong;Kim, Han-Kil;Park, Jae-Yong;Lee, Suk-Gyu;Chun, Du-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1141-1145
    • /
    • 2005
  • This paper proposes a robust tension control algorithm for the let-off and take-up system driven by servo motor which is robust to disturbance and tension variation by using SVR(Support Vector Regression). Quality of textile goods in fiber manufacturing process highly depends on control of let-off, take-up and tension which are essential for constant tension control of yarn and textile fabrics and correct length of them. The physical properties of textile fabrics are very sensitive to several factors(temperature, humidity, radius change of warp beam etc.) which result in tension change. Rapid development of fiber manufacture machine for higher productivity requires control system for let-off, take-up and tension for robustness to sharp tension-variation and quick response. The validity and the usefulness of the proposed algorithm are thoroughly verified through numerical simulation.

  • PDF

Noise Removal using Support Vector Regression in Noisy Document Images

  • Kim, Hee-Hoon;Kang, Seung-Hyo;Park, Jai-Hyun;Ha, Hyun-Ho;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.669-680
    • /
    • 2012
  • Noise removal of document images is a necessary step during preprocessing to recognize characters effectively because it has influences greatly on processing speed and performance for character recognition. We have considered using the spatial filters such as traditional mean filters and Gaussian filters, and wavelet transformed based methods for noise deduction in natural images. However, these methods are not effective for the noise removal of document images. In this paper, we present noise removal of document images using support vector regression. The proposed approach consists of two steps which are SVR training step and SVR test step. We construct an optimal prediction model using grid search with cross-validation in SVR training step, and then apply it to noisy images to remove noises in test step. We evaluate our SVR based method both quantitatively and qualitatively for noise removal in Korean, English and Chinese character documents, and compare it to some existing methods. Experimental results indicate that the proposed method is more effective and can get satisfactory removal results.

Support vector regression을 응용한 barbaralane의 global potential energy surface 재구성

  • Ryu, Seong-Ok;Choe, Seong-Hwan;Kim, U-Yeon
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.1-13
    • /
    • 2014
  • Potential Energy Surface(PES)를 양자 계산을 통해 알아내는 것은 화학 반응을 이해하는 데에 큰 도움이 된다. 이를테면 Transition State(TS)의 configuration을 알 수 있고, 따라서 reaction path와 활성화 에너지 값을 예측하여, 진행시키고자 하는 화학반응의 이해를 도울 수 있다. 하지만 PES를 그리기 위해서는 해당 분자의 다양한 configuration에 대한 singlet point energy 계산이 필요하기 때문에, 계산적인 측면에서 많은 비용을 요구한다. 따라서 product와 reactant의 구조와 같은 critical point의 정보를 이용하여 최소한의 configuration을 sampling하여 전체 PES를 재구성하는 기계학습 알고리즘을 개발하여 다차원 PES 상에서의 화학반응의 예측을 가능하게 하고자 한다. 본 연구에서는 Barbaralane의 두 안정화 된 구조의 critical point로 하여 이 주변을 random normal distribution하여, B3LYP/6-31G(d) level의 DFT 계산을 통해 relaxed scanning하여 구조와 에너지를 구하였으며, 이 정보를 Support Vector Regression(SVR) 알고리즘을 적용하여 PES를 재구현하였으며, 반응경로와 TS의 구조 그리고 활성화 에너지를 구하였다. 또한 본 기계학습 알고리즘을 바닥상태에서 일어나는 반응이 아닌, 들뜬 상태와 전자 구조가 변하는 화학반응, avoid crossing, conical intersection과 같은 Non-adiabatic frame에서 일어나는 현상에 적용 가능성을 논하고자 한다.

  • PDF

Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression

  • Koo, Young Do;Yoo, Kwae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.817-824
    • /
    • 2017
  • Residual stress is a critical element in determining the integrity of parts and the lifetime of welded structures. It is necessary to estimate the residual stress of a welding zone because residual stress is a major reason for the generation of primary water stress corrosion cracking in nuclear power plants. That is, it is necessary to estimate the distribution of the residual stress in welding of dissimilar metals under manifold welding conditions. In this study, a cascaded support vector regression (CSVR) model was presented to estimate the residual stress of a welding zone. The CSVR model was serially and consecutively structured in terms of SVR modules. Using numerical data obtained from finite element analysis by a subtractive clustering method, learning data that explained the characteristic behavior of the residual stress of a welding zone were selected to optimize the proposed model. The results suggest that the CSVR model yielded a better estimation performance when compared with a classic SVR model.

A SOFT-SENSING MODEL FOR FEEDWATER FLOW RATE USING FUZZY SUPPORT VECTOR REGRESSION

  • Na, Man-Gyun;Yang, Heon-Young;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.69-76
    • /
    • 2008
  • Most pressurized water reactors use Venturi flow meters to measure the feedwater flow rate. However, fouling phenomena, which allow corrosion products to accumulate and increase the differential pressure across the Venturi flow meter, can result in an overestimation of the flow rate. In this study, a soft-sensing model based on fuzzy support vector regression was developed to enable accurate on-line prediction of the feedwater flow rate. The available data was divided into two groups by fuzzy c means clustering in order to reduce the training time. The data for training the soft-sensing model was selected from each data group with the aid of a subtractive clustering scheme because informative data increases the learning effect. The proposed soft-sensing model was confirmed with the real plant data of Yonggwang Nuclear Power Plant Unit 3. The root mean square error and relative maximum error of the model were quite small. Hence, this model can be used to validate and monitor existing hardware feedwater flow meters.

Tool Lifecycle Optimization using ν-Asymmetric Support Vector Regression (ν-ASVR을 이용한 공구라이프사이클 최적화)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.208-216
    • /
    • 2020
  • With the spread of smart manufacturing, one of the key topics of the 4th industrial revolution, manufacturing systems are moving beyond automation to smartization using artificial intelligence. In particular, in the existing automatic machining, a number of machining defects and non-processing occur due to tool damage or severe wear, resulting in a decrease in productivity and an increase in quality defect rates. Therefore, it is important to measure and predict tool life. In this paper, ν-ASVR (ν-Asymmetric Support Vector Regression), which considers the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, was proposed and applied to the tool wear prediction problem. In the case of tool wear, if the predicted value of the tool wear amount is smaller than the actual value (under-estimation), product failure may occur due to tool damage or wear. Therefore, it can be said that ν-ASVR is suitable because it is necessary to overestimate. It is shown that even when adjusting the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, the ratio of the number of data belonging to ⲉ-tube can be adjusted with ν. Experiments are performed to compare the accuracy of various kernel functions such as linear, polynomial. RBF (radialbasis function), sigmoid, The best result isthe use of the RBF kernel in all cases

Application of an Optimized Support Vector Regression Algorithm in Short-Term Traffic Flow Prediction

  • Ruibo, Ai;Cheng, Li;Na, Li
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.719-728
    • /
    • 2022
  • The prediction of short-term traffic flow is the theoretical basis of intelligent transportation as well as the key technology in traffic flow induction systems. The research on short-term traffic flow prediction has showed the considerable social value. At present, the support vector regression (SVR) intelligent prediction model that is suitable for small samples has been applied in this domain. Aiming at parameter selection difficulty and prediction accuracy improvement, the artificial bee colony (ABC) is adopted in optimizing SVR parameters, which is referred to as the ABC-SVR algorithm in the paper. The simulation experiments are carried out by comparing the ABC-SVR algorithm with SVR algorithm, and the feasibility of the proposed ABC-SVR algorithm is verified by result analysis. Continuously, the simulation experiments are carried out by comparing the ABC-SVR algorithm with particle swarm optimization SVR (PSO-SVR) algorithm and genetic optimization SVR (GA-SVR) algorithm, and a better optimization effect has been attained by simulation experiments and verified by statistical test. Simultaneously, the simulation experiments are carried out by comparing the ABC-SVR algorithm and wavelet neural network time series (WNN-TS) algorithm, and the prediction accuracy of the proposed ABC-SVR algorithm is improved and satisfactory prediction effects have been obtained.