• Title/Summary/Keyword: support vector regression machine

Search Result 386, Processing Time 0.032 seconds

Estimation of software project effort with genetic algorithm and support vector regression (유전 알고리즘 기반의 서포트 벡터 회귀를 이용한 소프트웨어 비용산정)

  • Kwon, Ki-Tae;Park, Soo-Kwon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.729-736
    • /
    • 2009
  • The accurate estimation of software development cost is important to a successful development in software engineering. Until recent days, the model using regression analysis based on statistical algorithm and machine learning method have been used. However, this paper estimates the software cost using support vector regression, a sort of machine learning technique. Also, it finds the best set of optimized parameters applying genetic algorithm. The proposed GA-SVR model outperform some recent results reported in the literature.

Support Vector Machine for Linear Regression

  • Hwang, Changha;Seok, Kyungha
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.2
    • /
    • pp.337-344
    • /
    • 1999
  • Support vector machine(SVM) is a new and very promising regression and classification technique developed by Vapnik and his group at AT&T Bell laboratories. This article provides a brief overview of SVM focusing on linear regression. We explain from statistical point of view why SVM might be attractive and how this could be compared with other linear regression techniques. Furthermore. we explain model selection based on VC-theory.

  • PDF

Machine learning-based Predictive Model of Suicidal Thoughts among Korean Adolescents. (머신러닝 기반 한국 청소년의 자살 생각 예측 모델)

  • YeaJu JIN;HyunKi KIM
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • This study developed models using decision forest, support vector machine, and logistic regression methods to predict and prevent suicidal ideation among Korean adolescents. The study sample consisted of 51,407 individuals after removing missing data from the raw data of the 18th (2022) Youth Health Behavior Survey conducted by the Korea Centers for Disease Control and Prevention. Analysis was performed using the MS Azure program with Two-Class Decision Forest, Two-Class Support Vector Machine, and Two-Class Logistic Regression. The results of the study showed that the decision forest model achieved an accuracy of 84.8% and an F1-score of 36.7%. The support vector machine model achieved an accuracy of 86.3% and an F1-score of 24.5%. The logistic regression model achieved an accuracy of 87.2% and an F1-score of 40.1%. Applying the logistic regression model with SMOTE to address data imbalance resulted in an accuracy of 81.7% and an F1-score of 57.7%. Although the accuracy slightly decreased, the recall, precision, and F1-score improved, demonstrating excellent performance. These findings have significant implications for the development of prediction models for suicidal ideation among Korean adolescents and can contribute to the prevention and improvement of youth suicide.

Incremental Support Vector Learning Method for Function Approximation (함수 근사를 위한 점증적 서포트 벡터 학습 방법)

  • 임채환;박주영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.135-138
    • /
    • 2002
  • This paper addresses incremental learning method for regression. SVM(support vector machine) is a recently proposed learning method. In general training a support vector machine requires solving a QP (quadratic programing) problem. For very large dataset or incremental dataset, solving QP problems may be inconvenient. So this paper presents an incremental support vector learning method for function approximation problems.

  • PDF

Empirical Choice of the Shape Parameter for Robust Support Vector Machines

  • Pak, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.543-549
    • /
    • 2008
  • Inspired by using a robust loss function in the support vector machine regression to control training error and the idea of robust template matching with M-estimator, Chen (2004) applies M-estimator techniques to gaussian radial basis functions and form a new class of robust kernels for the support vector machines. We are specially interested in the shape of the Huber's M-estimator in this context and propose a way to find the shape parameter of the Huber's M-estimating function. For simplicity, only the two-class classification problem is considered.

New Normalization Methods using Support Vector Machine Regression Approach in cDNA Microarray Analysis

  • Sohn, In-Suk;Kim, Su-Jong;Hwang, Chang-Ha;Lee, Jae-Won
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.51-56
    • /
    • 2005
  • There are many sources of systematic variations in cDNA microarray experiments which affect the measured gene expression levels like differences in labeling efficiency between the two fluorescent dyes. Print-tip lowess normalization is used in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. However, print-tip lowess normalization performs poorly in situation where error variability for each gene is heterogeneous over intensity ranges. We proposed the new print-tip normalization methods based on support vector machine regression(SVMR) and support vector machine quantile regression(SVMQR). SVMQR was derived by employing the basic principle of support vector machine (SVM) for the estimation of the linear and nonlinear quantile regressions. We applied our proposed methods to previous cDNA micro array data of apolipoprotein-AI-knockout (apoAI-KO) mice, diet-induced obese mice, and genistein-fed obese mice. From our statistical analysis, we found that the proposed methods perform better than the existing print-tip lowess normalization method.

  • PDF

Enhancement of Text Classification Method (텍스트 분류 기법의 발전)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.155-156
    • /
    • 2019
  • Traditional machine learning based emotion analysis methods such as Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) are less accurate. In this paper, we propose an improved kNN classification method. Improved methods and data normalization achieve the goal of improving accuracy. Then, three classification algorithms and an improved algorithm were compared based on experimental data.

  • PDF

Hybrid Fuzzy Least Squares Support Vector Machine Regression for Crisp Input and Fuzzy Output

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2010
  • Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model. Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-SVM. LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a high dimensional feature space. The proposed method is not computationally expensive since its solution is obtained from a simple linear equation system. In particular, this method is a very attractive approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental results are then presented which indicate the performance of this method.

VLSI Architecture using Support Vector Machine-based Biometric Authentication (Support Vector Machine 기반 생체인식 전용 VLSI 구조)

  • 반성범;정용화;정교일
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.417-420
    • /
    • 2002
  • In this paper, we propose a VLSI architecture for computation of the SVM(Support Vector Machine) that has become established as a powerful technique for solving a variety of classification, regression, and so on. When we compare the proposed systolic arrays with the conventional method, our architecture exhibits a lot of advantages in terms of latency and throughput rate.

  • PDF

Support-vector-machine Based Sensorless Control of Permanent Magnet Synchronous Motor

  • Back, Woon-Jae;Han, Dong-Chang;Kim, Jong-Mu;Park, Jung-Il;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.149-152
    • /
    • 2004
  • Speed and torque control of PMSM(Permanent Magnet Synchronous Motor) are usually achieved by using position and speed sensors which require additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been performed for the elimination of speed and position sensors. In this paper, a novel speed sensorless control of a permanent magnet synchronous motor based on SVMR(Support Vector Machine Regression) is presented. The SVM regression method is an algorithm that estimates an unknown mapping between a system's input and outputs, from the available data or training data. Two well-known different voltage model is necessary to estimate the speed of a PMSM. The validity and the usefulness of proposed algorithm are thoroughly verified through numerical simulation.

  • PDF